Explainability

В современном мире машинного обучения тема объяснимости и интерпретируемости моделей становится неотъемлемой частью развития искуственного интеллекта.

Когда алгоритмы машинного обучения используются для принятия решений, особенно в чувствительных областях, таких как медицина или право, а также в научных применениях, важно понимать, почему модель делает тот или иной вывод.

В этой лекции мы рассмотрим концепции и методы, касающиеся способов представления и объяснения выводов, полученных от моделей машинного обучения.

Мотивация использования Explainability¶

Модели машинного обучения представляют собой черный ящик.

alttext

Иногда это становится препятствием для внедрения моделей.

Есть как минимум три причины, по которым нас может интересовать объяснение предсказаний модели.

1. Доверие к предсказаниям

Нельзя остановить ядерную электростанцию или назначить пациенту опасное лечение лишь на основании предсказания «черного ящика». Даже маловероятная ошибка в таких случаях будет иметь тяжелые последствия. Поэтому человек, принимающий решение, должен понимать, на основе каких признаков или симптомов сделано предсказание.

2. Обнаружение некорректных зависимостей

Модель может использовать совсем не те признаки, которые соответствуют реальным объектам. То есть вместо реальных свойств объекта ориентироваться на случайно обнаруженные зависимости, не связанные с реальными данными (фон, водяной знак и т. п.).

Яркий пример мы можем увидеть в статье "Why Should I Trust You?" 🎓[arxiv], авторы которой обучили классификатор волков и хаски на изображениях, отобранных так, чтобы на всех фотографиях волков на фоне был снег, а на фотографиях хаски — нет. На рисунке ниже мы можем увидеть, на что обращает внимание при предсказаниях полученная в результате такого обучения модель.

alttext
Source: Explaining the Predictions of Any Classifier

3. Публикации в научных журналах

Вероятность публикации статьи значительно повышается, если автор смог объяснить происхождение результатов своего исследования.

Explainability & Interpretability

alttext

В англоязычной литературе можно встретить два термина, связанные с темой доверия к ML моделям: Explainability и Interpretability. Терминология в этой области еще не устоялась, и в разных источниках эти термины определяют по-разному. Можно выделить следующие характерные различия:

  • Explainability — методики, позволяющие объяснить механизм функционирования модели. Например, для линейной регрессии это анализ коэффициентов при параметрах.

  • Interpretability — анализ того, как изменение входов модели влияло на ее выходы. Например, закрашивая часть пикселей изображения, можно выяснить, какие из них повлияют на предсказания (пример с хаски и волками).

Мы рассмотрим оба типа методов.

[blog] ✏️ Machine Learning Explainability vs Interpretability: Two concepts that could help restore trust in AI

Объяснимость моделей классического ML¶

Некоторые алгоритмы машинного обучения обладают свойством объяснимости сами по себе. Объяснить, почему модель выдала то или иное предсказание, возможно непосредственно исходя из понимания принципа работы модели.

Чтобы подчеркнуть, что в отличие от "черных ящиков" внутреннее устройство таких моделей прозрачно и понятно, их называют "белыми" или "прозрачными" ящиками (glass box).

В частности, к таким алгоритмам относятся линейные модели и модели, основанные на деревьях решений.

alttext

Оценка важности признаков для линейных моделей¶

В случае с линейными моделями нам было сравнительно легко определить, какие признаки модель считает важными. Если модель присваивает какому-то признаку большой вес, то этот признак сильнее влияет на предсказание.

При этом стоит отметить, что признаки должны быть сравнимы, то есть должны находиться в сравнимых диапазонах и быть выражены в одних единицах измерения (или быть безразмерными).

Пример для табличных данных (Boston Dataset)¶

Для примера скачаем датасет жилья Бостона (The Boston Housing Dataset 🛠️[doc]), в котором проанализируем зависимость цены на жилье от параметров жилья и района, в котором оно находится.

In [1]:
import pandas as pd

# load dataset
boston_dataset = pd.read_csv(
    "https://edunet.kea.su/repo/EduNet-web_dependencies/datasets/boston_dataset.csv",
    index_col=0,
)
x_data = boston_dataset.iloc[:, :-1]
y_data = boston_dataset["target"].values

boston_dataset.head()
Out[1]:
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2

Посмотрим на статистики признаков:

In [2]:
boston_dataset.describe()
Out[2]:
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 12.653063 22.532806
std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 7.141062 9.197104
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.730000 5.000000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 6.950000 17.025000
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 11.360000 21.200000
75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 16.955000 25.000000
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 37.970000 50.000000

Из описательных статистик по признакам видно, что признаки несравнимы. Поэтому коэффициенты линейной модели, обученной на таких данных будут нести в себе не только важность, но и масштабировать значения, чтобы перевести их в размерность целевой переменной. Этот факт будет мешать интерпретировать значения весов перед признаками как степень их влияния на предскзазание целевой переменной.

Обучим модель на стандартизованных данных:

In [3]:
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

ss = StandardScaler()
x_data_scaled = ss.fit_transform(x_data)

model = LinearRegression()
model.fit(x_data_scaled, y_data)
Out[3]:
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()

Выведем коэффициенты признаков, отсортированные по абсолютному значению:

In [4]:
linear_importance = pd.DataFrame(
    {"name": boston_dataset.columns[:-1], "coef": model.coef_}
).sort_values("coef", key=abs, ascending=False)

linear_importance
Out[4]:
name coef
12 LSTAT -3.743627
7 DIS -3.104044
5 RM 2.674230
8 RAD 2.662218
9 TAX -2.076782
10 PTRATIO -2.060607
4 NOX -2.056718
1 ZN 1.081569
0 CRIM -0.928146
11 B 0.849268
3 CHAS 0.681740
2 INDUS 0.140900
6 AGE 0.019466
In [5]:
import matplotlib.pyplot as plt
import seaborn as sns

linear_importance["sign"] = linear_importance["coef"].apply(
    lambda x: "neg" if x < 0 else "pos"
)
palette = {"neg": "#1e88e5", "pos": "#ff0d57"}

plt.figure(figsize=(5, 5))
plt.title("Linear model coefficients")
sns.barplot(
    data=linear_importance,
    y="name",
    x="coef",
    hue="sign",
    palette=palette,
    legend=False,
    orient="h",
)
plt.show()

Добавим абсолютные значения для сравнения с другими оценками важности.

In [6]:
linear_importance["abs(coef)"] = linear_importance["coef"].abs()

Оценка важности признаков для деревьев решений¶

В случае с деревьями всё далеко не так очевидно: дерево не знает такой концепции, как "вес признака".

Универсального критерия значимости для деревьев у нас нет, и, в зависимости от задачи и от того, как эти признаки устроены, ответы могут быть разными.

С одним из способов оценки качества признаков для дерева решений мы познакомились, когда строили дерево решений на третьей лекции. Мы использовали метрику $\text{Gini}$:

$$\large \text{Gini} = 1 - \sum_ip_i^2,$$

где $p_i$ — вероятность того, что объект, попавший в данный лист, относится к $i$-му классу. Чем меньше $\text{Gini}$ в листьях, тем лучше узел, от которого “растут” листья, разделяет классы.

Для того, чтобы охарактеризовать, насколько данный узел хорошо разделяет выборку, мы строили метрику $\text{impurity}$, в которой суммировали $\text{Gini}$ листьев данного узла с весами, равными доле объектов, попавших в данный лист. После чего смотрели, на сколько $\text{impurity}$ уменьшилось ($\text{decrease}$) на данном узле (стало ближе к “идеальному” нулю).

$$\large \text{Impurity decrease} = \text{Gini}_0 - (\dfrac{n_1}{n_1+n_2}\text{Gini}_1 + \dfrac{n_2}{n_1+n_2}\text{Gini}_2),$$

где $n_1, n_2$ — число объектов в листьях, $ \text{Gini}_0$ — чистота исходного узла.

Именно $\text{impurity decrease}$ используется для расчета атрибута feature_importances_ ️️🛠️[doc] в Sklearn. Для случайного леса (и других ансамблей) просто выдается среднее по деревьям.

У данного метода есть недостаток: он завышает качество признаков с большим количеством возможных значений.

Даже если признак не информативен, но у него много значений, на нем можно выбрать большое количество порогов, по которым можно разбить данные, что приведет к переобучению.

Бинарные и категориальные признаки с небольшим числом категорий потенциально могут получать заниженное качество по сравнению с вещественными, даже если те дают худшее разбиение.

Пример для табличных данных (Boston Dataset)¶

Посмотрим на важность признаков, основанную на impurity decrease.

In [7]:
import numpy as np
from sklearn.ensemble import RandomForestRegressor

rng = np.random.RandomState(42)
model = RandomForestRegressor(random_state=rng)
model.fit(x_data, y_data)
Out[7]:
RandomForestRegressor(random_state=RandomState(MT19937) at 0x78D8E0BCFD40)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
RandomForestRegressor(random_state=RandomState(MT19937) at 0x78D8E0BCFD40)
In [8]:
gini_importance = pd.DataFrame(
    {
        "name": boston_dataset.columns[:-1],
        "feature importances": model.feature_importances_,
    }
).sort_values("feature importances", ascending=False)
gini_importance
Out[8]:
name feature importances
12 LSTAT 0.450044
5 RM 0.362574
7 DIS 0.062982
0 CRIM 0.034634
4 NOX 0.021108
10 PTRATIO 0.016098
9 TAX 0.014828
6 AGE 0.014450
11 B 0.010778
2 INDUS 0.006308
8 RAD 0.003774
1 ZN 0.001534
3 CHAS 0.000888
In [9]:
plt.figure(figsize=(13, 4))
plt.subplot(1, 2, 1)
plt.title("Linear model")
sns.barplot(
    data=linear_importance,
    y="name",
    x="abs(coef)",
    color=sns.xkcd_rgb["azure"],
    orient="h",
)

plt.subplot(1, 2, 2)
plt.title("Random forest")
sns.barplot(
    data=gini_importance,
    y="name",
    x="feature importances",
    color=sns.xkcd_rgb["azure"],
    orient="h",
)
plt.show()

Можно видеть, что важность признаков для одних и тех же данных зависит от модели. При этом признаки RM — количество комнат в доме, и LSTAT — процент людей с низким социальным статусом (без среднего образования, безработных), важны для обеих моделей, что достаточно логично.

In [10]:
x_data = boston_dataset.iloc[:, :-1]

num_unique = [x_data[column].nunique() for column in x_data.columns]

num_unique = pd.DataFrame(
    {"name": x_data.columns, "num unique": num_unique}
).sort_values("num unique", ascending=False)

plt.figure(figsize=(5, 5))
plt.title("Random forest")
sns.barplot(
    data=num_unique,
    y="name",
    x="num unique",
    color=sns.xkcd_rgb["azure"],
    orient="h",
)
plt.show()

Интересно отметить, что оба признака (RM и LSTAT), оказавшиеся наиболее важными для Random Forest, имеют большое количество уникальных значений.

Методы, изучающие отклик модели на изменение входных данных¶

В этом разделе мы рассмотрим методы, изучающие отклик модели на изменение входных данных. Они также называются Model-Agnostic Methods и находятся ближе всего к концепции “черного ящика”. Эти методы изучают связь между входами и выходами модели и пытаются ее объяснить.

alttext

ICE (Individual Conditional Expectation)¶

Одним из самых простых и интуитивно понятных методов является метод ICE (Individual Conditional Expectation). Он заключается в следующем:

  1. Обучаем и фиксируем модель.
  2. Выбираем один объект.
  3. Выбираем один признак этого объекта, который мы будем менять в некотором диапазоне, все остальные признаки фиксируем.
  4. Меняем этот признак и смотрим, как меняется предсказание модели.
  5. Строим кривую зависимости целевого значения от изменяемого признака для модели.
  6. Повторяем для другого объекта.

Посмотрим, как этот метод работает на примере модели Random Forest.

Пример для табличных данных (Boston Dataset)¶

Загрузим и предобработаем данные:

In [11]:
import pandas as pd

# load dataset
boston_dataset = pd.read_csv(
    "https://edunet.kea.su/repo/EduNet-web_dependencies/datasets/boston_dataset.csv",
    index_col=0,
)
x_data = boston_dataset.iloc[:, :-1]
y_data = boston_dataset["target"].values

boston_dataset.head()
Out[11]:
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2

Обучим модель:

In [12]:
import numpy as np
from sklearn.ensemble import RandomForestRegressor

rng = np.random.RandomState(42)
model = RandomForestRegressor(random_state=rng)
model.fit(x_data, y_data)
Out[12]:
RandomForestRegressor(random_state=RandomState(MT19937) at 0x78D897F48C40)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
RandomForestRegressor(random_state=RandomState(MT19937) at 0x78D897F48C40)

Нам интересно посмотреть на два признака, которые были наиболее важны для предсказания: RM — среднее количество комнат в жилье, LSTAT — процент людей с низким социальным статусом, и на один признак, который для Random Forest не важен: AGE — возраст постройки.

In [13]:
import matplotlib.pyplot as plt
from sklearn.inspection import PartialDependenceDisplay

_, ax = plt.subplots(ncols=3, figsize=(15, 5), sharey=True, constrained_layout=True)

features_info = {
    "features": ["RM", "LSTAT", "AGE"],
    "kind": "both",
    "centered": False,
}

common_params = {
    "subsample": 50,
    "n_jobs": 2,
    "grid_resolution": 20,
    "random_state": 0,
}

x_data = pd.DataFrame(x_data, columns=boston_dataset.iloc[:, :-1].columns)

display = PartialDependenceDisplay.from_estimator(
    model,
    x_data,
    **features_info,
    ax=ax,
    **common_params,
)

Синие линии — это отдельные объекты. По оси $x$ — изменяемые признаки для этих объектов, по оси $y$ — изменение целевого значения. Оранжевым цветом нарисовано среднее по объектам.

Видно, что увеличение количества комнат в большинстве случаев положительно влияет на цену жилья, увеличение процента людей с низким социальным статусом — отрицательно, а возраст постройки не важен.

LIME (Local Interpretable Model-agnostic Explanations)¶

Принцип работы¶

Нам бы хотелось оценивать все признаки одновременно для любой модели. Для этого можно попробовать заменить "черный ящик" (black-box) "прозрачным" (glass-box).

Ключевая идея LIME 🎓[arxiv] — локальная аппроксимация сложно-интерпретируемой (black-box) модели при помощи легко-интерпретируемой (glass-box).

Давайте разбирать идею по кусочкам:

  1. Локальная аппроксимация — значит, что мы берем один объект и модифицируем его (изменяем признаки), чтобы получить небольшой датасет, локализованный вокруг исходного объекта.
  2. Сложно интерпретируемая модель — модель, для которой мы проводим оценку (наш "черный ящик"). Ее мы используем для того, чтобы получить предсказания для датасета, построенного на основе одного объекта.
  3. Таким образом, мы получаем датасет, включающий признаки и предсказания “черного ящика”. На этом датасете учим “прозрачный ящик” — легко-интерпретируемую модель, для которой мы умеем определять важность признаков. Например, линейную модель или дерево.

Идею LIME можно проиллюстрировать следующим образом:

По осям отложены значения двух непрерывных признаков. Изначально мы имеем сложно интерпретируюмую модель, которая разделяет пространство признаков на две области со сложной границей.

Шаг 1. Выбираем один объект, для которого мы хотим получить локальное объяснение (на иллюстрации это $\large x^*$).

Шаг 2. Сэмплируем вокруг интересущего нас объекта новые объекты (черные точки).

Шаг 3. Используем исходную модель для разметки сэмплированных точек — получаем новый датасет, представляющий локальную область вокруг интересующего нас объекта.

Шаг 4. Взвешиваем объектам из локального датасета с учетом их расстояния до интересующего нас объекта.

Шаг 5. Обучаем на полученном локальном датасете линейную модель с учетом весов для новых объектов. В локальной области интересующего нас объекта линейная модель ведет себя схоже с исходной сложной моделью. Используем важность признаков простой линейной модели как оценку важностей признаков для сложной модели в локальной области интересующего нас объекта.

Описание алгоритма¶

Итак, мы хотим найти glass-box модель $g(x)$, которая будет локально аппроксимировать black-box модель $f(x)$ в окрестности объекта интереса $x^*$. $G$ — семейство интерпретируемых моделей (например, линейные модели). Искомая аппроксимация будет выглядеть следующим образом:

$$\large\hat{g}=\underset{g\in G}{\mathrm{argmin}}L(f,g,\pi_x)+\Omega (g),$$

где $\pi_x$ — определяющееся по некоторой метрике расстояние от сгенерированных объектов до объекта интереса,

$L(f,g,\pi_x)$ — функция ошибки, измеряющая несоответствие между предсказаниями моделей $f(x)$ и $g(x)$,

$\Omega (g)$ — штраф за сложность модели $g(x)$.

На практике, чтобы не заниматься оптимизацией этого штрафа, зачастую просто вводят некоторое ограничение на сложность моделей $g(x)$. Для деревьев это может быть глубина дерева, для линейных моделей — число ненулевых коэффициентов.

Часто нам придется интерпретировать модели с огромным числом признаков. Чтобы упростить задачу, LIME может создавать интерпретируемые представления признаков.

Модели $f(x)$ и $g(x)$ могут оперировать разными пространствами признаков, $f(x)$ — пространством размерности $p$ ($R^p$), соответствующей количеству признаков в исходных данных, $g(x)$ — пространством размерности $q$ ($R^q$), при этом $q<<p$. Пространство $R^q$ называется интерпретируемым представлением признаков. Пусть некая функция $h(x)$ переводит пространство признаков $R^p$ в $R^q$.

Саму функцию, оценивающую расхождение между предсказаниями моделей $f(x)$ и $g(x)$, можно представить следующим образом:

$$\large L(f,g,\pi_x)=\sum_{z,z'}\pi_x(z)(f(z)-g(z'))^2,$$

где $z$ и $z'$ — наборы искусственно сгенерированных объектов в окрестности $x^*$ в пространствах $R^p$ и $R^q$ соответственно.

Теперь мы можем собрать целиком алгоритм получения объяснения вклада переменных. Представим его в виде псевдокода:

  1. Дано: $x^*$ — объект для интерпретации вкладов признаков в модель, $N$ — размер искусственного датасета в окрестности целевого объекта, $\text{similarity}$ — метрика расстояния.
  2. $x' = h(x^*)$ — переводим целевой объект в пространство меньшей размерности.
z' = []
for i in range(N):
    z'[i] = sample_around(x')
    y'[i] = f(z[i])
    pi_x'[i] = similarity(x', z'[i])

return K-Lasso(y', x', pi_x')

Выдачей алгоритма служит линейная модель, отобравшая $К$ признаков на основе $y'$, $x'$, $\pi_x'$.

Как получить набор объектов вблизи искомого?¶

  • В текстах можно удалить слово;
  • Для изображений можно делить картинку на области (суперпиксели) и поочередно закрашивать их одним и тем же цветом (средним).
  • Для табличных данных: для бинарных переменных в низкоразмерном пространстве достаточно просто менять значение переменной на противоположное (0 на 1 и 1 на 0). Для вещественных переменных были предложены различные варианты. Например, к ним можно прибавлять Гауссов шум или дискретизировать (например, по квантилям).

Ограничения¶

Описанный подход позволяет интерпретировать поведение модели только в некоторой области вблизи интересующего нас экземпляра.

На практике этого может быть достаточно. Работает быстро, так как не требует перебора всех комбинаций признаков.

Пример NLP (классификация статей)¶

alttext
Source: Explaining the Predictions of Any Classifier

Используем датасет fetch_20newsgroups 🛠️[doc].

Данные «The 20 Newsgroups» 🛠️[doc] — это коллекция примерно из 20 000 новостных документов, разделенная (приблизительно) равномерно между 20 различными категориями. Изначально она собиралась Кеном Ленгом (Ken Lang), возможно, для его работы «NewsWeeder: Learning to filter Netnews» 🎓[article] («Новостной обозреватель: учимся фильтровать новости из сети»).

Коллекция «The 20 Newsgroups» стала популярным набором данных для экспериментов с техниками машинного обучения для текстовых приложений, таких как классификация и кластеризация.

[git] 🐾 Fetching data, training a classifier (tutorial)

В данном примере мы будем использовать Multinomial Naive Bayes 🛠️[doc] для классификации и TF-IDF для представления текстов.

In [14]:
import sklearn
from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test")
# making class names shorter
class_names = [
    x.split(".")[-1] if "misc" not in x else ".".join(x.split(".")[-2:])
    for x in newsgroups_train.target_names
]
class_names[3] = "pc.hardware"
class_names[4] = "mac.hardware"

for i, class_name in enumerate(class_names):
    print(f"{i:<3d}{class_name}")
0  atheism
1  graphics
2  ms-windows.misc
3  pc.hardware
4  mac.hardware
5  x
6  misc.forsale
7  autos
8  motorcycles
9  baseball
10 hockey
11 crypt
12 electronics
13 med
14 space
15 christian
16 guns
17 mideast
18 politics.misc
19 religion.misc

Знаменитый набор данных из 20 групп новостей является эталоном, он использовался для сравнения различных моделей в нескольких статьях.

Мы берем два класса, которые трудно различить, потому что в них много схожих слов: христианство и атеизм.

Обучая модель, мы получаем точность на тестовых данных 83,5%, что является удивительно высоким показателем. Если бы точность была нашим единственным мерилом доверия, мы бы точно доверились этому классификатору.

Однако давайте посмотрим на объяснение на рисунке для произвольного экземпляра в тестовом наборе:

In [15]:
import sklearn.metrics
from sklearn.naive_bayes import MultinomialNB

# Again, let's use the tfidf vectorizer, commonly used for text.
vectorizer = sklearn.feature_extraction.text.TfidfVectorizer(lowercase=False)
train_vectors = vectorizer.fit_transform(newsgroups_train.data)
test_vectors = vectorizer.transform(newsgroups_test.data)

# Train the model
model_nb = MultinomialNB(alpha=0.01)
model_nb.fit(train_vectors, newsgroups_train.target)

# Calculate F1_score
pred = model_nb.predict(test_vectors)

f1_metric = sklearn.metrics.f1_score(newsgroups_test.target, pred, average="weighted")

print(f"f1-score on test: {f1_metric:.3f}")
f1-score on test: 0.835

Как видно из кода, текст подается на вход модели не в сыром виде, а после предобработки объектом vectorizer.

LimeTextExplainer 🛠️[doc] ждет на вход данные и класс модели:

explain_instance(
    text_instance,
    classifier_fn,
    labels=(1, ),
    top_labels=None,
    num_features=10,
    num_samples=5000,
    distance_metric='cosine',
    model_regressor=None)

classifier_fn — функция для классификации, которая получает список из d строк и выдает (d, k) numpy-массив с предсказанными вероятностями для k классов.

Поэтому в примере используется обертка — пайплайн, который объединяет TfidfVectorizer и модель:

[doc] 🛠️ sklearn.pipeline.make_pipeline

In [16]:
from sklearn.pipeline import make_pipeline

# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html
model_with_preprocessing = make_pipeline(vectorizer, model_nb)

Мы видим, что этот классификатор имеет очень высокий F1 score. Руководство Sklearn для 20 newsgroups 🛠️[doc] указывает, что Multinomial Naive Bayes переобучается на этом наборе данных, изучая нерелевантные взаимосвязи, такие как заголовки.

Теперь мы используем LIME для объяснения отдельных предсказаний.

В случае мультикласса мы должны определить, для каких меток хотим получить объяснения, с помощью параметра «labels». Сгенерируем пояснения для меток 0 и 15:

In [17]:
!pip -q install lime
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 275.7/275.7 kB 6.1 MB/s eta 0:00:00
  Preparing metadata (setup.py) ... done
  Building wheel for lime (setup.py) ... done
In [18]:
import lime
from lime.lime_text import LimeTextExplainer


explainer = LimeTextExplainer(class_names=class_names, random_state=42)
idx = 1340
exp = explainer.explain_instance(
    newsgroups_test.data[idx],
    model_with_preprocessing.predict_proba,
    num_features=10,
    labels=[0, 15],
)

Возвращается специальный объект класса Explanation 🛠️[doc]:

In [19]:
print(exp.as_list(label=0))
print(exp.as_list(label=15))
[('Caused', 0.25322531210147387), ('Rice', 0.13595123602639667), ('Genocide', 0.11768387005657018), ('scri', -0.09855597458646022), ('certainty', -0.09476293913546043), ('owlnet', -0.0934907172908853), ('Semitic', -0.09131694930901126), ('Theism', 0.0784110699063054), ('justices', 0.05556474240520185), ('Heck', 0.033360524240830865)]
[('Caused', -0.1744987865761024), ('fsu', 0.11120723769711544), ('scri', 0.10146389399943065), ('certainty', 0.09916521316107652), ('owlnet', 0.09808331888483239), ('Genocide', -0.07795538004971421), ('Rice', -0.051919681057782656), ('Hitler', -0.04857271879454341), ('Heck', -0.03965035614391036), ('justices', -0.029307637688004165)]

Обратите внимание, что положительный и отрицательный знаки относятся к конкретной метке, так что слова, отрицательные по отношению к классу 0, могут быть положительными по отношению к классу 15, и наоборот.

Теперь давайте посмотрим на визуализацию объяснений. Обратите внимание на то, что для каждого класса слова в правой части строки являются «положительными», а слова в левой части — «отрицательными» для объясняемого класса.

Также видно, что в классификаторе используются как осмысленные слова (такие как «Theism», «Genocide» и т. д.), так и неосмысленные (название университета «Rice», домен «owlnet»).

In [20]:
exp.show_in_notebook(text=newsgroups_test.data[idx], labels=(0,))
In [21]:
exp.show_in_notebook(text=newsgroups_test.data[idx], labels=(15,))

На этом примере можно увидеть, что в заголовке или кавычках может быть и полезный сигнал, который будет помогать обобщению (например, в строке «Тема»).

А есть и слова, которые нельзя обобщать (например, адреса электронной почты и названия учреждений).

Пример для изображений (ResNet18)¶

[blog] ✏️ Local Interpretable Model-Agnostic Explanations (LIME): An Introduction

[git] 🐾 Using Lime with PyTorch (tutorial)

Идея¶

Давайте разберемся, как работают интерпретируемые представления признаков для картинок.

На рисунке ниже показан пример того, как LIME работает для классификации изображений.

Представьте, что мы хотим объяснить классификатор, который предсказывает, насколько вероятно, что изображение содержит древесную лягушку.

Мы берем изображение слева и делим его на интерпретируемые компоненты (смежные суперпиксели 🎓[article]).

alttext
Source: Local Interpretable Model-Agnostic Explanations (LIME): An Introduction

Далее мы отключаем некоторые из суперпикселей (закрашиваем серым).

Для каждой такой картинки мы получаем вероятность того, что на изображении есть древесная лягушка, и формируем датасет из частично закрашенных картинок и предсказаний.

Затем мы обучаем линейную модель на этом наборе данных. Веса, соответствующие суперпикселю, будут объяснять его вклад в предсказание.

alttext
Source: Local Interpretable Model-Agnostic Explanations (LIME): An Introduction

Проанализируем предсказание сверточной сети Inception. Посмотрим, почему ее классификатор предсказывает «древесную лягушку» как наиболее вероятный класс, за которым следуют «бильярдный стол» и «воздушный шар» с более низкими вероятностями.

Мы видим, что классификатор в первую очередь фокусируется на морде лягушки как на объяснении предсказанного класса.

Это также проливает свет на то, почему «бильярдный стол» имеет ненулевую вероятность: руки и глаза лягушки напоминают бильярдные шары, особенно на зеленом фоне. Точно так же сердце похоже на красный воздушный шар.

alttext
Source: Local Interpretable Model-Agnostic Explanations (LIME): An Introduction

Анализ ResNet18¶

Рассмотрим на примере, как работает метод LIME для изображений.

Для начала загрузим и предварительно обработаем изображение. Затем мы будем использовать обученную на ImageNet модель ResNet18 для классификации этого изображения. После этого мы построим объяснения предсказанных классов с наибольшей вероятностью, используя метод LIME.

In [22]:
!wget -q 'https://edunet.kea.su/repo/EduNet-web_dependencies/dev-2.0/L14/cat_and_dog1.jpg' -O cat_and_dog1.jpg
!wget -q 'https://edunet.kea.su/repo/EduNet-web_dependencies/datasets/imagenet_class_index.json' -O imagenet_class_index.json
In [23]:
import os
from PIL import Image


def get_image(path):
    with open(os.path.abspath(path), "rb") as f:
        with Image.open(f) as img:
            return img.convert("RGB")


img = get_image("cat_and_dog1.jpg")
plt.imshow(img)
plt.axis("off")
plt.show()

Теперь нам нужно преобразовать это изображение в тензор PyTorch и нормализовать его для использования в нашей предварительно обученной модели.

In [24]:
from torchvision import transforms


# resize & normalize


def get_input_transform():
    transform = transforms.Compose(
        [
            transforms.Resize(224),
            transforms.CenterCrop((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(
                mean=(0.485, 0.456, 0.406),
                std=(0.229, 0.224, 0.225),
            ),
        ]
    )
    return transform


# for get croped img from input tensor


def get_reverse_transform():
    transform = transforms.Compose(
        [
            transforms.Normalize(
                mean=(0.0, 0.0, 0.0), std=(1 / 0.229, 1 / 0.224, 1 / 0.225)
            ),
            transforms.Normalize(
                mean=(-0.485, -0.456, -0.406),
                std=(1.0, 1.0, 1.0),
            ),
            transforms.Lambda(lambda x: torch.permute(x, (0, 2, 3, 1))),
            transforms.Lambda(lambda x: x.detach().numpy()),
        ]
    )
    return transform


def get_input_tensors(img):
    transform = get_input_transform()
    # unsqeeze converts single image to batch of 1
    return transform(img).unsqueeze(0)


def get_crop_img(img_tensor):
    transform = get_reverse_transform()
    return transform(img_tensor)[0]

Загрузим предобученную модель ResNet18, доступную в PyTorch, и классы изображений из ImageNet.

In [25]:
import json
import torch
from torchvision import models

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = models.resnet18(weights="ResNet18_Weights.DEFAULT")

idx2label, cls2label, cls2idx = [], {}, {}
with open(os.path.abspath("/content/imagenet_class_index.json"), "r") as read_file:
    class_idx = json.load(read_file)
    idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]
    lable2idx = {class_idx[str(k)][1]: k for k in range(len(class_idx))}
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /root/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
100%|██████████| 44.7M/44.7M [00:00<00:00, 87.6MB/s]

Получим предсказание. А после этого полученные нами прогнозы (логиты) пропустим через softmax, чтобы получить вероятности и метки классов для 5 лучших прогнозов.

In [26]:
import torch.nn.functional as F

img_t = get_input_tensors(img)
model = model.to(device)
model.eval()
logits = model(img_t.to(device))

probs = F.softmax(logits, dim=1)
probs5 = probs.topk(5)
plt.imshow(get_crop_img(img_t))
plt.axis("off")
plt.show()
tuple(
    (p, c, idx2label[c])
    for p, c in zip(
        probs5[0][0].detach().cpu().numpy(), probs5[1][0].detach().cpu().numpy()
    )
)
Out[26]:
((0.4030773, 235, 'German_shepherd'),
 (0.095317766, 281, 'tabby'),
 (0.06907895, 282, 'tiger_cat'),
 (0.026926216, 285, 'Egyptian_cat'),
 (0.02285185, 811, 'space_heater'))

(tabby — это тоже кошка)

Применим LIME:

In [27]:
!pip install -q lime

LIME генерирует массив изображений из исходного входного изображения.

Таким образом, нам нужно предоставить конструктору:

  1. Исходное изображение в виде массива numpy.
  2. Функцию классификации, которая будет принимать массив искаженных изображений в качестве входных данных и генерировать вероятности для каждого класса для каждого изображения в качестве выходных данных.

Поэтому потребуется вспомогательная функция для обработки пакета изображений в соответствии с API LIME.

In [28]:
def batch_predict(images):  # images are numpy arrays
    model.eval()
    transform = get_input_transform()
    batch = torch.stack(tuple(transform(Image.fromarray(i)) for i in images), dim=0)

    model.to(device)
    batch = batch.to(device)

    logits = model(batch)
    probs = F.softmax(logits, dim=1)
    return probs.detach().cpu().numpy()

Создадим экзепляр ImageExplainer и сгенерируем объект explanation. У LimeImageExplainer есть особенность: он работает только с numpy.array и 3-хканальными изображениями.

In [29]:
import lime
from lime import lime_image

img_t = get_input_tensors(img)

explainer = lime_image.LimeImageExplainer(random_state=42)
explanation = explainer.explain_instance(
    np.array(255 * get_crop_img(img_t)).astype(
        np.uint8
    ),  # LIME assume that input is a numpy array :(
    batch_predict,  # classification function
    top_labels=5,
    hide_color=0,
    num_samples=1000,  # number of images that will be sent to classification function
    random_seed=42,
)
  0%|          | 0/1000 [00:00<?, ?it/s]

Выведем top-5 предсказаний, сделанных через LIME.

P.S. Они не обязаны совпадать с предсказаниями для картинки без изменений.

In [30]:
for i, id in enumerate(explanation.top_labels):
    print(i, idx2label[id])
0 German_shepherd
1 tabby
2 tiger_cat
3 Egyptian_cat
4 space_heater

Воспользуемся маской на изображении и посмотрим области, которые дают лучший прогноз.

In [31]:
from skimage.segmentation import mark_boundaries

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 10))

for i, id in enumerate(explanation.top_labels[:2]):
    temp, mask = explanation.get_image_and_mask(
        id, positive_only=False, num_features=5, hide_rest=False
    )
    img_boundry = mark_boundaries(temp, mask)
    ax[i].imshow(img_boundry)
    ax[i].set_title(idx2label[id])
    ax[i].axis("off")
    # number of clusters to be shown in the image: num_features=5
    # show or not negatively impacting clusters: positive_only=False
    # first 5 may be only positive

Зеленым цветом обозначена область наивысшего прогноза, оранжевым — области, которые меньше всего соответствуют нашему прогнозу. При positive_only=False будут показаны только границы.

SHAP (SHapley Additive exPlanations)¶

Принцип работы¶

alttext

Цель SHAP 📚[book] — объяснить предсказание объекта $x$ путем вычисления вклада каждого признака в предсказание. Для этого вычисляются SHAP-значения, основанные на значениях Шепли из теории игр.

SHAP рассматривает объясняемую модель как игру, а признаки, используемые в обучении, как коалицию игроков. SHAP-значения говорят нам, как справедливо распределить "выигрыш" между игроками — это вклад, который каждый признак вносит в предсказание модели.

Рассмотрим на примере, как оценивается вклад игроков в общий выигрыш с помощью значений Шепли.

Пусть у нас есть уличная музыкальная группа из трех участников: барабанщика, гитариста и солиста. Они выступают на улице и собирают деньги в шляпу. Музыканты хотят оценить, какой вклад в заработок привносит каждый участник группы.

Для этого можно устроить эксперимент: несколько вечеров подряд группа будет выступать для публики в разных комбинациях состава участников (на иллюстрации все комбинации изображены в виде вершин графа и пронумерованы, ребра графа обозначают добавление участника в состав):

  • пустое множество участников (пустая шляпа на улице, вершина $1$),
  • все участники по одному (вершины $2$–$4$),
  • все участники по двое (вершины $5$–$7$),
  • полный состав из трех музыкантов (вершина $8$).
alttext

Для простоты представим, что каждый вечер тот или иной состав группы оценивается одной и той же публикой. Оценкой является заработок за вечер. Музыканты поиграли по такой схеме все восемь вечеров и зафиксировали заработок за каждый вечер.

alttext

Теперь в каждой вершине графа находится оценка того или иного состава группы публикой.

Зная оценки всех возможных комбинаций состава этой группы, мы можем посчитать вклад каждого участника в итоговый заработок.

Вклад участника в заработок вычисляется на основании так называемых маржинальных вкладов (marginal contribution, MC).

Маржинальный вклад игрока — это разница между заработком состава, включающим данного игрока, и заработком состава без данного игрока.

В данном случае можно рассчитать маржинальный вклад для игрока как разницу оценок вершин, соединенных ребром в графе.

Например, маржинальный вклад барабанщика по сравнению с пустой группой $\{∅\}$ рассчитывается следующим образом (см. вершины $2$ и $1$):

$$ \large \text{MC}_{🥁,\{∅\}}= \text{Earning}_{\{🥁\}}\ - \text{Earning}_{\{∅\}}= 4\ 000 - 0 = 4\ 000$$

А маржинальный вклад солиста при добавлении его в пару к гитаристу будет равен (см. вершины $7$ и $3$):

$$ \large \text{MC}_{🎤,\{🎸\}}= \text{Earning}_{\{🎸🎤\}}\ \ - \text{Earning}_{\{🎸\}}\ = 9\ 500 - 4\ 800 = 4\ 700$$

Для того, чтобы оценить итоговый вклад барабанщика в оценку всей группы публикой, нужно учесть его маржинальные вклады во все комбинации, где он участвовал (в графе выделены соответствующие вершины):

alttext

SHAP-значение для барабанщика в этой группе является общим вкладом игрока в заработок и вычисляется как взвешенная сумма его маржинальных вкладов:

$$ \large \text{SHAP}_{🥁}=w_1\cdot \text{MC}_{🥁,\{\emptyset\}}+w_2\cdot \text{MC}_{🥁,\{🎸\}}+w_3\cdot \text{MC}_{🥁,\{🎤\}}+w_4\cdot \text{MC}_{🥁,\{🎸🎤\}} $$

Веса определяются согласно правилу: сумма весов маржинальных вкладов для каждого уровня графа должна быть равной 1.

Таким образом, нетрудно рассчитать веса маржинальных вкладов барабанщика:

  • первый уровень содержит $3$ ребра, каждое из которых будет иметь вес $\dfrac{1}{3}$
  • второй уровень содержит $6$ ребер, каждое из которых будет иметь вес $\dfrac{1}{6}$
  • третий уровень содержит $3$ ребра, каждое из которых будет иметь вес $\dfrac{1}{3}$

Таким образом: $\displaystyle w_1=w_4=\frac{1}{3}, \; w_2=w_3=\frac{1}{6}$.

В этой аналогии:

  • конкретный музыкальный коллектив — это один объект выборки,
  • музыканты — это признаки,
  • публика — это модель,
  • заработок группы (оценка группы публикой) — предсказание модели (оценка объекта моделью).

Однако эта аналогия в случае моделей машинного обучения требует дополнительного пояснения. В примере с музыкальной группой мы использовали одну модель (публику) для оценки разных комбинаций признаков (разных составов группы).

Отсутствие какого-то игрока в группе означает отсуствие признака в признаковом описании объекта. Большинство моделей ML не могут работать с пропущенными значениями (то есть с признаковыми описаниями различной длины). Поэтому для получения оценок придется всякий раз обучать модель заново на новом подмножестве признаков (сохраняя гиперпараметры модели и набор обучающих объектов).

Для получения предсказания модели для пустого множества признаков может быть использовано, например, среднее значение целевой переменной по обучающей выборке.

Kernel SHAP¶

У описанного выше метода есть недостаток: нам нужно обучить огромное количество моделей. Для всего 10-ти признаков это $2^{10} = 1024$ модели.

На помощь нам приходит статья A Unified Approach to Interpreting Model Predictions 🎓[arxiv]. В ней введено понятие аддитивного метода атрибуции признаков в котором в качестве “стеклянного ящика” используется функция бинарных переменных (есть признак/нет признака):

$$\large g(z') = \phi_0 +\sum_{i=1}^M\phi_i z_i'$$

где $z'\in\{0,1\}^M$ — вектор из $0$ и $1$ длины $M$: $0$ — отсутсвие признака, $1$ — наличие признака, $M$ — количество упрощенных признаков (например, суперпикселей для изображения). $ϕ_i$ — вклад (важность) $i$-того упрощенного признака.

Для адекватного описания работы модели данный метод должен удовлетворять трем свойствам:

  1. Локальная точность — результат модели объяснения $g(x’)$ должен совпадать с результатом оригинальной модели $f(x):$
$$\large f(x)=g(x'),$$

где

  • $x' = \{x_1, x_2, ...,x_M\}$ — упрощенные признаки объекта (например, суперпиксели для изображения), вектор $z’$ выше характеризует присутствие/отсутствие этих признаков.

  • $x$ — оригинальный набор признаков объекта (например: значения RGB пикселей изображения).

  • Упрощенный набор признаков соответствует оригинальному набору:

$$\large x=h_x(x')$$
  1. Отсутствие — если признак отсутствует, он вносит нулевой вклад:
$$\large x_i = \text{None} \to \phi_i = 0$$
  1. Консистентность — если модель $f$ изменяется таким образом $f'$, что вклад некоторых упрощенных признаков $\phi_i$ увеличивается или остается прежним, независимо от вклада других признаков, то выход модели не может уменьшиться:
$$\large \phi_i(f', x) \geq \phi_i(f, x) \to f'_x(z') - f'_x(z'\verb!\!i) \geq f_x(z') - f_x(z'\verb!\!i),$$

где $z'\verb!\!i$ — это $z'$ при $z_i=0$.

В статье 🎓[arxiv] показано, что единственным методом адитивной атрибуции, удовлетворяющим всем свойствам являются значения Шепли, которые можно записать, как:

$$\large \phi_i(f, x) = \sum_{z'⊆x'} \frac{|z|!(M-|z'|-1)!}{M!}[f_x(z')-f_x(z'\verb!\!i)]$$

Значения Шепли можно получить 🎓[arxiv] (вывод есть в статье), используя линейный LIME 🍋:

$$\large \hat{g}=\underset{g\in G}{\mathrm{argmin}}L(f,g,\pi_{x'})+\Omega (g)$$

со следующими параметрами:

$$\large \Omega(g) = 0,$$$$\large \pi_{x'}(z')=\frac{M-1}{C^{|z'|}_M|z'|(M-|z'|)},$$$$\large L(f, g, \pi_{x'}) = \sum_{z' \in Z}[f(h^{-1}(z'))-g(z')]^2\pi_{x'}(z'),$$

где $|z'|$ — количество ненулевых элементов $z'$, $C^k_n$ — биномиальный коэффициент.

Такой метод расчета называется Kernel SHAP. Он позволяет не обучать огромное количество моделей и реализовать вычисление значений Шепли за конечное время. Именно так считаются значения Шепли в библиотеке SHAP.

Пример для табличных данных (Boston Dataset)¶

Установим пакет SHAP:

In [32]:
!pip install -q shap
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 538.2/538.2 kB 6.4 MB/s eta 0:00:00

Для примера скачаем датасет жилья Бостона (boston_dataset), в котором проанализируем зависимость цены на жилье от параметров жилья и района, в котором оно находится.

Разобьем данные на train и test и обучим Random Forest модель.

In [33]:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor


# load dataset
boston_dataset = pd.read_csv(
    "https://edunet.kea.su/repo/EduNet-web_dependencies/datasets/boston_dataset.csv",
    index_col=0,
)
x_data = boston_dataset.iloc[:, :-1]
y_data = boston_dataset["target"]

# Split the data into train and test data
x_train, x_test, y_train, y_test = train_test_split(
    x_data, y_data, test_size=0.2, random_state=42
)

# Build the model with the random forest regression algorithm
rng = np.random.RandomState(42)
model = RandomForestRegressor(n_jobs=-1, max_depth=4, random_state=rng)
model.fit(x_train, y_train)
Out[33]:
RandomForestRegressor(max_depth=4, n_jobs=-1,
                      random_state=RandomState(MT19937) at 0x78D897F4B840)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
RandomForestRegressor(max_depth=4, n_jobs=-1,
                      random_state=RandomState(MT19937) at 0x78D897F4B840)

Применим SHAP.

In [34]:
import shap

# explain the model's predictions using SHAP
# (same syntax works for LightGBM, CatBoost, scikit-learn and spark models)
explainer = shap.TreeExplainer(model)
explanations = explainer(x_test)
In [35]:
print(type(explanations))

print(explanations)
<class 'shap._explanation.Explanation'>
.values =
array([[ 3.59513250e-01, -7.57494185e-04, -5.36065189e-03, ...,
         3.75769950e-02,  1.09907495e-02,  1.56735456e+00],
       [ 3.23542906e-01, -6.30312450e-02, -3.63459255e-02, ...,
         9.69022019e-03, -1.04828771e-03,  5.44875225e+00],
       [ 1.05924802e+00, -2.12919386e-03, -1.16701150e-02, ...,
        -2.49177497e-01,  5.58777181e-02, -4.13010066e+00],
       ...,
       [-9.90074478e-01, -2.18585538e-03, -1.43130276e-02, ...,
        -2.21104649e-01, -1.84161230e-01, -8.30349060e+00],
       [ 3.71187999e-01, -2.37094303e-03,  1.39199662e-02, ...,
        -3.90942703e-02,  1.69203421e-02,  7.06083619e-01],
       [ 3.61234522e-01, -2.37094303e-03, -3.34938142e-02, ...,
        -4.71612736e-02,  3.60390550e-02,  1.83550067e+00]])

.base_values =
array([22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698, 22.8867698, 22.8867698, 22.8867698,
       22.8867698, 22.8867698])

.data =
array([[9.17800e-02, 0.00000e+00, 4.05000e+00, ..., 1.66000e+01,
        3.95500e+02, 9.04000e+00],
       [5.64400e-02, 4.00000e+01, 6.41000e+00, ..., 1.76000e+01,
        3.96900e+02, 3.53000e+00],
       [1.05740e-01, 0.00000e+00, 2.77400e+01, ..., 2.01000e+01,
        3.90110e+02, 1.80700e+01],
       ...,
       [1.40507e+01, 0.00000e+00, 1.81000e+01, ..., 2.02000e+01,
        3.50500e+01, 2.12200e+01],
       [5.18800e-02, 0.00000e+00, 4.49000e+00, ..., 1.85000e+01,
        3.95990e+02, 1.28600e+01],
       [9.51200e-02, 0.00000e+00, 1.28300e+01, ..., 1.87000e+01,
        3.83230e+02, 8.94000e+00]])

Force plot

Хороший способ визуализировать вклад каждого признака в конкретный прогноз — использовать так называемый "график сил" (force plot).

В приведенном ниже примере показан график сил для первого объекта в тестовом наборе данных.

In [36]:
# load JS visualization code to notebook
shap.initjs()
# visualize the first prediction’s explanation
shap.plots.force(explanations[0])
Out[36]:
Visualization omitted, Javascript library not loaded!
Have you run `initjs()` in this notebook? If this notebook was from another user you must also trust this notebook (File -> Trust notebook). If you are viewing this notebook on github the Javascript has been stripped for security. If you are using JupyterLab this error is because a JupyterLab extension has not yet been written.
  • $f(x)$ — это прогноз модели по анализируемому объекту недвижимости. А "base value" — это средний прогноз по всему набору тестовых данных. Или, другими словами, это значение, которое можно было бы спрогнозировать, если бы мы не знали никаких характеристик текущего примера.

  • Элементы, которые способствуют увеличению цены, показаны красным, а те, которые уменьшают — синим.

  • Длина вектора — “сила” влияния. Численное значение (оно не совпадает с длиной) — важность признака. Из нашего анализа мы помним, что увеличение RM положительно влияет на предсказание, но для данного объекта RM маленькое, поэтому влияет на цену отрицательно.

Waterfall plot

Другой способ визуализации SHAP-объяснения для конкретного примера — так называемый "график-водопад" (waterfall plot). Фактически, это график сил, где стрелки, обозначающие сдвиг предсказания от базового значения за счет SHAP-значений, расположены одна под другой, начиная с самой длинной сверху.

In [37]:
# visualize the first prediction's explanation using waterfall

shap.plots.waterfall(explanations[0])

Этот график объясняет движущие силы конкретного прогноза: влияние каждого отдельного признака (наименее значимые признаки объединяются в одну группу) представлено стрелками, которые перемещают предсказание влево и вправо, начиная с базового значения (внизу картинки).

Указанный выше пример приведен только для одного объекта.

Если мы возьмем много объяснений в виде графика сил, повернем их на 90 градусов, а затем сложим их по горизонтали, мы сможем увидеть объяснения для всего набора данных (в блокноте этот график является интерактивным):

In [38]:
# load JS visualization code to notebook
shap.initjs()
# visualize the training set predictions
shap.force_plot(explanations)
Out[38]:
Visualization omitted, Javascript library not loaded!
Have you run `initjs()` in this notebook? If this notebook was from another user you must also trust this notebook (File -> Trust notebook). If you are viewing this notebook on github the Javascript has been stripped for security. If you are using JupyterLab this error is because a JupyterLab extension has not yet been written.
  • По оси $x$ — объекты, по оси $y$ — вклад признаков в предсказание для каждого объекта. Важно заметить, что объекты упорядочены по схожести, которая считается по расстоянию между объектами.
  • Можно использовать выпадающее меню, чтобы посмотреть, как будет выглядеть график без упорядочивания или при упорядочивании по конкретному признаку.

Bar plot

Сводный график shap.plots.bar даст нам график важности признаков.

Признаки с высокой предсказательной способностью показаны вверху, а с низкой предсказательной силой — внизу.

In [39]:
shap.plots.bar(explanations)

Обратите внимание, что, согласно SHAP, наименьшей предсказательной способностью обладают признаки CHAS, ZN, RAD и INDUS.

Здесь мы только что рассмотрели алгоритм TreeExplainer для интерпретации модели.

Вы можете изучить остальные алгоритмы: DeepExplainer, KernelExplainer, LinearExplainer и GradientExplainer.

Пример NLP (перевод с английского на русский)¶

Рассмотрим пример интерпретации модели для предварительно обученной модели машинного перевода Machine Translation Explanations 🐾[git]. Для перевода будем использовать предобученную модель-трансформер 🎓[arxiv].

Используем одну из моделей huggingface 🐾[git].

Модель: Language Technology in Helsinki ✏️[blog]

[doc] 🛠️ Language Technology Research Group at the University of Helsinki

[doc] 🛠️ Helsinki-NLP/opus-mt-en-ru

In [40]:
!pip install -q transformers[sentencepiece]

Загружаем модель.

Для этого используется класс AutoModelForSeq2SeqLM, на вход которому передается имя модели, а возвращает он объект соответствующего класса.

In [41]:
import torch
import transformers
from transformers import AutoModelForSeq2SeqLM
from IPython.display import clear_output

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

lang = "en"
target_lang = "ru"
model_name = f"Helsinki-NLP/opus-mt-{lang}-{target_lang}"

# Download the model and the tokenizer
# can also try translation with different pre-trained models

# It's a Factory pattern
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.to(device)
clear_output()
print(type(model))
<class 'transformers.models.marian.modeling_marian.MarianMTModel'>

В данном случае нам вернулся объект типа MarianMT 🛠️[doc].

Теперь создадим токенайзер 🛠️[doc].

Как мы уже обсуждали, токенайзер преобразовывает слова и знаки препинания из исходного текста в токены, которые можно подать на вход модели. В данном случае возвращаются id. При этом не всегда одно слово преобразовывается в один токен, иногда слово разбивается по слогам на несколько токенов.

Токенайзер создается с помощью класса AutoTokenizer по имени модели.

In [42]:
!pip install -q sacremoses
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 897.5/897.5 kB 11.3 MB/s eta 0:00:00
In [43]:
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(model_name)

clear_output()

print(type(tokenizer))

input = tokenizer("Hello world!", return_tensors="pt")
print(input)

translated = model.generate(
    **tokenizer("Hello world!", return_tensors="pt").to(device), max_new_tokens=512
)
# ** -  is dictionary unpack operator
# https://pavel-karateev.gitbook.io/intermediate-python/sintaksis/args_and_kwargs
<class 'transformers.models.marian.tokenization_marian.MarianTokenizer'>
{'input_ids': tensor([[ 160, 5270,  564,   56,    0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1]])}

Теперь переведем целую фразу и проанализируем, как выход модели связан со входом.

Для этого создадим объект shap.Explainer 🛠️[doc], который в данном случае инициализируется экземпляром модели и экземпляром токенайзера.

В действительности вторым параметром конструктора shap.Explainer не обязательно должен быть токенайзер. shap.Explainer принимает объект, поддерживающий интерфейс masker:

masked_args = masker(*model_args, mask=mask)

Он используется для исключения части аргументов, и токенайзеры поддерживают этот интерфейс (shap.TokenMasker). Благодаря такому подходу SHAP может работать с различными моделями как с "черным ящиком".

Вместо того, чтобы запускать саму модель, мы запускаем Explainer (неявно вызывая его метод __call__).

In [44]:
import shap

# define the input sentences we want to translate
data = [
    "Transformers are a type of neural network architecture that have been gaining popularity. Transformers were developed to solve the problem of sequence transduction, or neural machine translation."
    "That means any task that transforms an input sequence to an output sequence. This includes speech recognition, text-to-speech transformation, etc.."
]

# we build an explainer by passing the model we want to explain and
# the tokenizer we want to use to break up the input strings
explainer = shap.Explainer(model, tokenizer, max_new_tokens=512)

# explainers are callable, just like models
explanation = explainer(data)
clear_output()

На выходе получаем объект класса shap.Explanation 🛠️[doc], который содержит значения Шепли для каждого токена.

In [45]:
print("Data", explanation.data)
print("SHAP values", explanation.values)
print("Shape", explanation.shape)  # 1, in, out
Data (array(['▁Trans', 'former', 's', '▁are', '▁a', '▁type', '▁of', '▁ne',
       'ural', '▁network', '▁architecture', '▁that', '▁have', '▁been',
       '▁gaining', '▁popularity', '.', '▁Trans', 'former', 's', '▁were',
       '▁developed', '▁to', '▁solve', '▁the', '▁problem', '▁of',
       '▁sequence', '▁trans', 'duct', 'ion', ',', '▁or', '▁ne', 'ural',
       '▁machine', '▁translation', '.', 'That', '▁means', '▁any', '▁task',
       '▁that', '▁transform', 's', '▁an', '▁input', '▁sequence', '▁to',
       '▁an', '▁output', '▁sequence', '.', '▁This', '▁includes',
       '▁speech', '▁recognition', ',', '▁text', '-', 'to', '-', 's', 'pe',
       'ech', '▁transformation', ',', '▁etc', '.', '.', ''], dtype=object),)
SHAP values [[[ 1.39694700e+00  5.75616847e+00 -5.07417767e-01 ... -2.29897152e-02
    2.00847441e-02 -9.21574658e-03]
  [ 8.24752197e-01  2.37404535e+00  2.44451605e+00 ... -3.03489130e-03
    3.48355277e-03  1.34331505e-03]
  [ 6.21933990e-01  3.28069819e-01  2.84975874e-01 ... -6.09600328e-04
   -1.29937957e-03  8.10789659e-04]
  ...
  [-2.12584656e-02  6.46664753e-02  7.64958889e-03 ...  2.91938526e-04
    4.99640948e-02  2.33951153e-02]
  [ 4.59862546e-03 -5.98606269e-01  1.26282991e-01 ...  5.25125547e-02
    3.01344616e-02  2.71421814e-02]
  [-2.75666469e-02 -1.07679722e-01  1.55281482e-02 ... -8.65370207e-03
   -2.89849946e-02  6.64150443e-03]]]
Shape (1, 71, 79)

Теперь, используя интерактивную визуализацию shap.plots.text 🛠️[doc], можно отобразить результат объяснения.

In [46]:
shap.initjs()
shap.plots.text(explanation)


[0]
outputs
Транс
форм
еры
-
это
тип
ней
рон
ной
сетево
й
архитектуры
,
которая
становится
все
более
популярно
й
.
Транс
форм
аторы
были
разработаны
для
решения
проблемы
транс
ду
кци
и
по
следовательности
,
или
ней
рон
ного
машин
ного
перевода
.
Это
означает
любую
задачу
,
которая
пре
образ
ует
по
следовательность
ввода
в
по
следовательность
вывода
.
Это
включает
распозна
вание
речи
,
транс
форм
ацию
текста
в
звук
и
т
.
д
.


-2-6-10-142610-4.0143-4.0143base value-0.0933281-0.0933281f(inputs)1.295 ▁Trans 0.826 s 0.723 former 0.504 ▁Transformer 0.361 s 0.336 ▁are▁a 0.263 ▁were▁developed▁to▁solve 0.173 ▁type▁of 0.159 ▁transforms▁an▁input 0.105 . 0.084 ▁transduction 0.083 ▁This▁includes▁speech▁recognition 0.066 , 0.018 . 0.015 ▁machine▁translation 0.011 ▁ne 0.005 . -0.271 ▁the▁problem▁of▁sequence -0.265 ▁network▁architecture -0.265 That▁means▁any▁task▁that -0.085 ▁or -0.075 ▁that▁have▁been▁gaining▁popularity -0.042 ▁etc. -0.037 ▁sequence▁to▁an▁output▁sequence -0.028 -0.012 . -0.008 ural -0.007 ▁text-to-speech▁transformation, -0.005 ▁ne -0.004 ural -0.004 ,
inputs
1.295
▁Trans
0.723
former
0.826
s
0.336 / 2
▁are▁a
0.173 / 2
▁type▁of
0.011
▁ne
-0.004
ural
-0.265 / 2
▁network▁architecture
-0.075 / 5
▁that▁have▁been▁gaining▁popularity
-0.012
.
0.504 / 2
▁Transformer
0.361
s
0.263 / 4
▁were▁developed▁to▁solve
-0.271 / 4
▁the▁problem▁of▁sequence
0.084 / 3
▁transduction
0.066
,
-0.085
▁or
-0.005
▁ne
-0.008
ural
0.015 / 2
▁machine▁translation
0.018
.
-0.265 / 5
That▁means▁any▁task▁that
0.159 / 4
▁transforms▁an▁input
-0.037 / 5
▁sequence▁to▁an▁output▁sequence
0.105
.
0.083 / 4
▁This▁includes▁speech▁recognition
-0.004
,
-0.007 / 9
▁text-to-speech▁transformation,
-0.042 / 2
▁etc.
0.005
.
-0.028
-2-3-4-5-101-4.0143-4.0143base value-0.0933281-0.0933281f(inputs)1.295 ▁Trans 0.826 s 0.723 former 0.504 ▁Transformer 0.361 s 0.336 ▁are▁a 0.263 ▁were▁developed▁to▁solve 0.173 ▁type▁of 0.159 ▁transforms▁an▁input 0.105 . 0.084 ▁transduction 0.083 ▁This▁includes▁speech▁recognition 0.066 , 0.018 . 0.015 ▁machine▁translation 0.011 ▁ne 0.005 . -0.271 ▁the▁problem▁of▁sequence -0.265 ▁network▁architecture -0.265 That▁means▁any▁task▁that -0.085 ▁or -0.075 ▁that▁have▁been▁gaining▁popularity -0.042 ▁etc. -0.037 ▁sequence▁to▁an▁output▁sequence -0.028 -0.012 . -0.008 ural -0.007 ▁text-to-speech▁transformation, -0.005 ▁ne -0.004 ural -0.004 ,
inputs
1.295
▁Trans
0.723
former
0.826
s
0.336 / 2
▁are▁a
0.173 / 2
▁type▁of
0.011
▁ne
-0.004
ural
-0.265 / 2
▁network▁architecture
-0.075 / 5
▁that▁have▁been▁gaining▁popularity
-0.012
.
0.504 / 2
▁Transformer
0.361
s
0.263 / 4
▁were▁developed▁to▁solve
-0.271 / 4
▁the▁problem▁of▁sequence
0.084 / 3
▁transduction
0.066
,
-0.085
▁or
-0.005
▁ne
-0.008
ural
0.015 / 2
▁machine▁translation
0.018
.
-0.265 / 5
That▁means▁any▁task▁that
0.159 / 4
▁transforms▁an▁input
-0.037 / 5
▁sequence▁to▁an▁output▁sequence
0.105
.
0.083 / 4
▁This▁includes▁speech▁recognition
-0.004
,
-0.007 / 9
▁text-to-speech▁transformation,
-0.042 / 2
▁etc.
0.005
.
-0.028
-2-6-10-142610-10.6884-10.6884base value4.266424.26642fТранс(inputs)5.645 ▁Trans 3.601 ▁Transformer 2.695 s 2.263 former 0.824 ▁text-to-speech▁transformation, 0.752 ▁transforms▁an▁input 0.551 s 0.517 ▁transduction 0.492 , 0.482 ▁This▁includes▁speech▁recognition 0.356 ▁machine▁translation 0.298 ▁etc. 0.186 ural 0.159 ▁ne 0.139 ▁sequence▁to▁an▁output▁sequence 0.08 ural 0.078 ▁ne 0.004 . -0.718 ▁the▁problem▁of▁sequence -0.713 That▁means▁any▁task▁that -0.599 . -0.458 ▁or -0.449 ▁are▁a -0.434 ▁were▁developed▁to▁solve -0.234 ▁that▁have▁been▁gaining▁popularity -0.161 ▁type▁of -0.108 -0.102 , -0.089 ▁network▁architecture -0.055 . -0.048 .
inputs
5.645
▁Trans
2.263
former
0.551
s
-0.449 / 2
▁are▁a
-0.161 / 2
▁type▁of
0.159
▁ne
0.186
ural
-0.089 / 2
▁network▁architecture
-0.234 / 5
▁that▁have▁been▁gaining▁popularity
-0.048
.
3.601 / 2
▁Transformer
2.695
s
-0.434 / 4
▁were▁developed▁to▁solve
-0.718 / 4
▁the▁problem▁of▁sequence
0.517 / 3
▁transduction
0.492
,
-0.458
▁or
0.078
▁ne
0.08
ural
0.356 / 2
▁machine▁translation
0.004
.
-0.713 / 5
That▁means▁any▁task▁that
0.752 / 4
▁transforms▁an▁input
0.139 / 5
▁sequence▁to▁an▁output▁sequence
-0.055
.
0.482 / 4
▁This▁includes▁speech▁recognition
-0.102
,
0.824 / 9
▁text-to-speech▁transformation,
0.298 / 2
▁etc.
-0.599
.
-0.108
-3-7-11-1515-10.6884-10.6884base value4.266424.26642fТранс(inputs)5.645 ▁Trans 3.601 ▁Transformer 2.695 s 2.263 former 0.824 ▁text-to-speech▁transformation, 0.752 ▁transforms▁an▁input 0.551 s 0.517 ▁transduction 0.492 , 0.482 ▁This▁includes▁speech▁recognition 0.356 ▁machine▁translation 0.298 ▁etc. 0.186 ural 0.159 ▁ne 0.139 ▁sequence▁to▁an▁output▁sequence 0.08 ural 0.078 ▁ne 0.004 . -0.718 ▁the▁problem▁of▁sequence -0.713 That▁means▁any▁task▁that -0.599 . -0.458 ▁or -0.449 ▁are▁a -0.434 ▁were▁developed▁to▁solve -0.234 ▁that▁have▁been▁gaining▁popularity -0.161 ▁type▁of -0.108 -0.102 , -0.089 ▁network▁architecture -0.055 . -0.048 .
inputs
5.645
▁Trans
2.263
former
0.551
s
-0.449 / 2
▁are▁a
-0.161 / 2
▁type▁of
0.159
▁ne
0.186
ural
-0.089 / 2
▁network▁architecture
-0.234 / 5
▁that▁have▁been▁gaining▁popularity
-0.048
.
3.601 / 2
▁Transformer
2.695
s
-0.434 / 4
▁were▁developed▁to▁solve
-0.718 / 4
▁the▁problem▁of▁sequence
0.517 / 3
▁transduction
0.492
,
-0.458
▁or
0.078
▁ne
0.08
ural
0.356 / 2
▁machine▁translation
0.004
.
-0.713 / 5
That▁means▁any▁task▁that
0.752 / 4
▁transforms▁an▁input
0.139 / 5
▁sequence▁to▁an▁output▁sequence
-0.055
.
0.482 / 4
▁This▁includes▁speech▁recognition
-0.102
,
0.824 / 9
▁text-to-speech▁transformation,
0.298 / 2
▁etc.
-0.599
.
-0.108
-2-6-10-142610-1.91884-1.91884base value4.061354.06135fформ(inputs)2.423 former 1.791 ▁Transformer 1.436 s 1.254 ▁text-to-speech▁transformation, 0.973 ▁transforms▁an▁input 0.329 s 0.231 ▁were▁developed▁to▁solve 0.184 That▁means▁any▁task▁that 0.143 ▁etc. 0.126 . 0.074 ▁the▁problem▁of▁sequence 0.052 ural 0.051 ▁ne 0.041 ▁ne 0.041 ural 0.021 ▁network▁architecture 0.016 -0.7 ▁transduction -0.68 , -0.529 ▁Trans -0.407 ▁machine▁translation -0.264 ▁sequence▁to▁an▁output▁sequence -0.154 . -0.139 . -0.104 ▁This▁includes▁speech▁recognition -0.083 ▁that▁have▁been▁gaining▁popularity -0.059 ▁are▁a -0.042 ▁type▁of -0.029 , -0.011 . -0.004 ▁or
inputs
-0.529
▁Trans
2.423
former
0.329
s
-0.059 / 2
▁are▁a
-0.042 / 2
▁type▁of
0.041
▁ne
0.041
ural
0.021 / 2
▁network▁architecture
-0.083 / 5
▁that▁have▁been▁gaining▁popularity
-0.139
.
1.791 / 2
▁Transformer
1.436
s
0.231 / 4
▁were▁developed▁to▁solve
0.074 / 4
▁the▁problem▁of▁sequence
-0.7 / 3
▁transduction
-0.68
,
-0.004
▁or
0.051
▁ne
0.052
ural
-0.407 / 2
▁machine▁translation
-0.154
.
0.184 / 5
That▁means▁any▁task▁that
0.973 / 4
▁transforms▁an▁input
-0.264 / 5
▁sequence▁to▁an▁output▁sequence
-0.011
.
-0.104 / 4
▁This▁includes▁speech▁recognition
-0.029
,
1.254 / 9
▁text-to-speech▁transformation,
0.143 / 2
▁etc.
0.126
.
0.016
1-1-3-5357-1.91884-1.91884base value4.061354.06135fформ(inputs)2.423 former 1.791 ▁Transformer 1.436 s 1.254 ▁text-to-speech▁transformation, 0.973 ▁transforms▁an▁input 0.329 s 0.231 ▁were▁developed▁to▁solve 0.184 That▁means▁any▁task▁that 0.143 ▁etc. 0.126 . 0.074 ▁the▁problem▁of▁sequence 0.052 ural 0.051 ▁ne 0.041 ▁ne 0.041 ural 0.021 ▁network▁architecture 0.016 -0.7 ▁transduction -0.68 , -0.529 ▁Trans -0.407 ▁machine▁translation -0.264 ▁sequence▁to▁an▁output▁sequence -0.154 . -0.139 . -0.104 ▁This▁includes▁speech▁recognition -0.083 ▁that▁have▁been▁gaining▁popularity -0.059 ▁are▁a -0.042 ▁type▁of -0.029 , -0.011 . -0.004 ▁or
inputs
-0.529
▁Trans
2.423
former
0.329
s
-0.059 / 2
▁are▁a
-0.042 / 2
▁type▁of
0.041
▁ne
0.041
ural
0.021 / 2
▁network▁architecture
-0.083 / 5
▁that▁have▁been▁gaining▁popularity
-0.139
.
1.791 / 2
▁Transformer
1.436
s
0.231 / 4
▁were▁developed▁to▁solve
0.074 / 4
▁the▁problem▁of▁sequence
-0.7 / 3
▁transduction
-0.68
,
-0.004
▁or
0.051
▁ne
0.052
ural
-0.407 / 2
▁machine▁translation
-0.154
.
0.184 / 5
That▁means▁any▁task▁that
0.973 / 4
▁transforms▁an▁input
-0.264 / 5
▁sequence▁to▁an▁output▁sequence
-0.011
.
-0.104 / 4
▁This▁includes▁speech▁recognition
-0.029
,
1.254 / 9
▁text-to-speech▁transformation,
0.143 / 2
▁etc.
0.126
.
0.016
-2-6-10-142610-7.75846-7.75846base value0.6930420.693042fеры(inputs)2.51 ▁Transformer 2.401 s 1.807 s 1.783 former 1.585 ▁Trans 0.447 That▁means▁any▁task▁that 0.241 ▁were▁developed▁to▁solve 0.231 ▁that▁have▁been▁gaining▁popularity 0.216 ▁are▁a 0.109 , 0.057 ▁This▁includes▁speech▁recognition 0.034 ▁ne 0.02 ural -0.68 ▁text-to-speech▁transformation, -0.326 ▁transduction -0.318 ▁sequence▁to▁an▁output▁sequence -0.282 ▁machine▁translation -0.274 , -0.237 ▁network▁architecture -0.228 ▁transforms▁an▁input -0.204 ▁etc. -0.109 . -0.1 ▁type▁of -0.083 . -0.047 ▁or -0.037 . -0.021 . -0.016 ural -0.014 ▁ne -0.013 ▁the▁problem▁of▁sequence -0.001
inputs
1.585
▁Trans
1.783
former
1.807
s
0.216 / 2
▁are▁a
-0.1 / 2
▁type▁of
0.034
▁ne
0.02
ural
-0.237 / 2
▁network▁architecture
0.231 / 5
▁that▁have▁been▁gaining▁popularity
-0.021
.
2.51 / 2
▁Transformer
2.401
s
0.241 / 4
▁were▁developed▁to▁solve
-0.013 / 4
▁the▁problem▁of▁sequence
-0.326 / 3
▁transduction
-0.274
,
-0.047
▁or
-0.014
▁ne
-0.016
ural
-0.282 / 2
▁machine▁translation
-0.083
.
0.447 / 5
That▁means▁any▁task▁that
-0.228 / 4
▁transforms▁an▁input
-0.318 / 5
▁sequence▁to▁an▁output▁sequence
-0.037
.
0.057 / 4
▁This▁includes▁speech▁recognition
0.109
,
-0.68 / 9
▁text-to-speech▁transformation,
-0.204 / 2
▁etc.
-0.109
.
-0.001
-4-6-8-10-202-7.75846-7.75846base value0.6930420.693042fеры(inputs)2.51 ▁Transformer 2.401 s 1.807 s 1.783 former 1.585 ▁Trans 0.447 That▁means▁any▁task▁that 0.241 ▁were▁developed▁to▁solve 0.231 ▁that▁have▁been▁gaining▁popularity 0.216 ▁are▁a 0.109 , 0.057 ▁This▁includes▁speech▁recognition 0.034 ▁ne 0.02 ural -0.68 ▁text-to-speech▁transformation, -0.326 ▁transduction -0.318 ▁sequence▁to▁an▁output▁sequence -0.282 ▁machine▁translation -0.274 , -0.237 ▁network▁architecture -0.228 ▁transforms▁an▁input -0.204 ▁etc. -0.109 . -0.1 ▁type▁of -0.083 . -0.047 ▁or -0.037 . -0.021 . -0.016 ural -0.014 ▁ne -0.013 ▁the▁problem▁of▁sequence -0.001
inputs
1.585
▁Trans
1.783
former
1.807
s
0.216 / 2
▁are▁a
-0.1 / 2
▁type▁of
0.034
▁ne
0.02
ural
-0.237 / 2
▁network▁architecture
0.231 / 5
▁that▁have▁been▁gaining▁popularity
-0.021
.
2.51 / 2
▁Transformer
2.401
s
0.241 / 4
▁were▁developed▁to▁solve
-0.013 / 4
▁the▁problem▁of▁sequence
-0.326 / 3
▁transduction
-0.274
,
-0.047
▁or
-0.014
▁ne
-0.016
ural
-0.282 / 2
▁machine▁translation
-0.083
.
0.447 / 5
That▁means▁any▁task▁that
-0.228 / 4
▁transforms▁an▁input
-0.318 / 5
▁sequence▁to▁an▁output▁sequence
-0.037
.
0.057 / 4
▁This▁includes▁speech▁recognition
0.109
,
-0.68 / 9
▁text-to-speech▁transformation,
-0.204 / 2
▁etc.
-0.109
.
-0.001
-2-6-10-142610-4.48829-4.48829base value-1.03025-1.03025f-(inputs)2.013 ▁are▁a 1.383 s 0.897 former 0.84 ▁Trans 0.767 That▁means▁any▁task▁that 0.331 ▁type▁of 0.06 ▁This▁includes▁speech▁recognition 0.055 ural 0.054 ▁ne 0.051 ural 0.047 ▁the▁problem▁of▁sequence 0.044 ▁ne 0.043 , 0.042 ▁or 0.027 . -1.065 ▁were▁developed▁to▁solve -0.369 ▁transforms▁an▁input -0.324 ▁text-to-speech▁transformation, -0.261 ▁Transformer -0.188 ▁sequence▁to▁an▁output▁sequence -0.185 s -0.17 . -0.131 ▁network▁architecture -0.125 ▁etc. -0.119 . -0.103 ▁that▁have▁been▁gaining▁popularity -0.061 ▁machine▁translation -0.032 , -0.032 ▁transduction -0.021 -0.008 .
inputs
0.84
▁Trans
0.897
former
1.383
s
2.013 / 2
▁are▁a
0.331 / 2
▁type▁of
0.044
▁ne
0.051
ural
-0.131 / 2
▁network▁architecture
-0.103 / 5
▁that▁have▁been▁gaining▁popularity
-0.119
.
-0.261 / 2
▁Transformer
-0.185
s
-1.065 / 4
▁were▁developed▁to▁solve
0.047 / 4
▁the▁problem▁of▁sequence
-0.032 / 3
▁transduction
-0.032
,
0.042
▁or
0.054
▁ne
0.055
ural
-0.061 / 2
▁machine▁translation
-0.008
.
0.767 / 5
That▁means▁any▁task▁that
-0.369 / 4
▁transforms▁an▁input
-0.188 / 5
▁sequence▁to▁an▁output▁sequence
0.027
.
0.06 / 4
▁This▁includes▁speech▁recognition
0.043
,
-0.324 / 9
▁text-to-speech▁transformation,
-0.125 / 2
▁etc.
-0.17
.
-0.021
-3-5-7-11-4.48829-4.48829base value-1.03025-1.03025f-(inputs)2.013 ▁are▁a 1.383 s 0.897 former 0.84 ▁Trans 0.767 That▁means▁any▁task▁that 0.331 ▁type▁of 0.06 ▁This▁includes▁speech▁recognition 0.055 ural 0.054 ▁ne 0.051 ural 0.047 ▁the▁problem▁of▁sequence 0.044 ▁ne 0.043 , 0.042 ▁or 0.027 . -1.065 ▁were▁developed▁to▁solve -0.369 ▁transforms▁an▁input -0.324 ▁text-to-speech▁transformation, -0.261 ▁Transformer -0.188 ▁sequence▁to▁an▁output▁sequence -0.185 s -0.17 . -0.131 ▁network▁architecture -0.125 ▁etc. -0.119 . -0.103 ▁that▁have▁been▁gaining▁popularity -0.061 ▁machine▁translation -0.032 , -0.032 ▁transduction -0.021 -0.008 .
inputs
0.84
▁Trans
0.897
former
1.383
s
2.013 / 2
▁are▁a
0.331 / 2
▁type▁of
0.044
▁ne
0.051
ural
-0.131 / 2
▁network▁architecture
-0.103 / 5
▁that▁have▁been▁gaining▁popularity
-0.119
.
-0.261 / 2
▁Transformer
-0.185
s
-1.065 / 4
▁were▁developed▁to▁solve
0.047 / 4
▁the▁problem▁of▁sequence
-0.032 / 3
▁transduction
-0.032
,
0.042
▁or
0.054
▁ne
0.055
ural
-0.061 / 2
▁machine▁translation
-0.008
.
0.767 / 5
That▁means▁any▁task▁that
-0.369 / 4
▁transforms▁an▁input
-0.188 / 5
▁sequence▁to▁an▁output▁sequence
0.027
.
0.06 / 4
▁This▁includes▁speech▁recognition
0.043
,
-0.324 / 9
▁text-to-speech▁transformation,
-0.125 / 2
▁etc.
-0.17
.
-0.021
-2-6-10-142610-1.32845-1.32845base value0.6549250.654925fэто(inputs)2.688 ▁are▁a 0.495 ▁were▁developed▁to▁solve 0.464 That▁means▁any▁task▁that 0.405 ▁This▁includes▁speech▁recognition 0.315 ▁the▁problem▁of▁sequence 0.06 , 0.034 ural 0.029 . 0.018 . 0.011 ▁ne 0.007 ▁ne 0.006 ural -0.459 former -0.377 ▁Trans -0.244 ▁type▁of -0.242 . -0.239 s -0.227 ▁sequence▁to▁an▁output▁sequence -0.203 ▁etc. -0.149 ▁Transformer -0.138 ▁network▁architecture -0.084 ▁text-to-speech▁transformation, -0.054 s -0.032 ▁that▁have▁been▁gaining▁popularity -0.031 ▁machine▁translation -0.024 -0.016 , -0.013 ▁or -0.009 ▁transforms▁an▁input -0.006 ▁transduction -0.003 .
inputs
-0.377
▁Trans
-0.459
former
-0.239
s
2.688 / 2
▁are▁a
-0.244 / 2
▁type▁of
0.011
▁ne
0.034
ural
-0.138 / 2
▁network▁architecture
-0.032 / 5
▁that▁have▁been▁gaining▁popularity
0.029
.
-0.149 / 2
▁Transformer
-0.054
s
0.495 / 4
▁were▁developed▁to▁solve
0.315 / 4
▁the▁problem▁of▁sequence
-0.006 / 3
▁transduction
-0.016
,
-0.013
▁or
0.007
▁ne
0.006
ural
-0.031 / 2
▁machine▁translation
0.018
.
0.464 / 5
That▁means▁any▁task▁that
-0.009 / 4
▁transforms▁an▁input
-0.227 / 5
▁sequence▁to▁an▁output▁sequence
-0.003
.
0.405 / 4
▁This▁includes▁speech▁recognition
0.06
,
-0.084 / 9
▁text-to-speech▁transformation,
-0.203 / 2
▁etc.
-0.242
.
-0.024
-0-1-2-3123-1.32845-1.32845base value0.6549250.654925fэто(inputs)2.688 ▁are▁a 0.495 ▁were▁developed▁to▁solve 0.464 That▁means▁any▁task▁that 0.405 ▁This▁includes▁speech▁recognition 0.315 ▁the▁problem▁of▁sequence 0.06 , 0.034 ural 0.029 . 0.018 . 0.011 ▁ne 0.007 ▁ne 0.006 ural -0.459 former -0.377 ▁Trans -0.244 ▁type▁of -0.242 . -0.239 s -0.227 ▁sequence▁to▁an▁output▁sequence -0.203 ▁etc. -0.149 ▁Transformer -0.138 ▁network▁architecture -0.084 ▁text-to-speech▁transformation, -0.054 s -0.032 ▁that▁have▁been▁gaining▁popularity -0.031 ▁machine▁translation -0.024 -0.016 , -0.013 ▁or -0.009 ▁transforms▁an▁input -0.006 ▁transduction -0.003 .
inputs
-0.377
▁Trans
-0.459
former
-0.239
s
2.688 / 2
▁are▁a
-0.244 / 2
▁type▁of
0.011
▁ne
0.034
ural
-0.138 / 2
▁network▁architecture
-0.032 / 5
▁that▁have▁been▁gaining▁popularity
0.029
.
-0.149 / 2
▁Transformer
-0.054
s
0.495 / 4
▁were▁developed▁to▁solve
0.315 / 4
▁the▁problem▁of▁sequence
-0.006 / 3
▁transduction
-0.016
,
-0.013
▁or
0.007
▁ne
0.006
ural
-0.031 / 2
▁machine▁translation
0.018
.
0.464 / 5
That▁means▁any▁task▁that
-0.009 / 4
▁transforms▁an▁input
-0.227 / 5
▁sequence▁to▁an▁output▁sequence
-0.003
.
0.405 / 4
▁This▁includes▁speech▁recognition
0.06
,
-0.084 / 9
▁text-to-speech▁transformation,
-0.203 / 2
▁etc.
-0.242
.
-0.024
-2-6-10-142610-8.59891-8.59891base value0.5815180.581518fтип(inputs)6.112 ▁type▁of 1.502 ▁are▁a 0.703 ▁were▁developed▁to▁solve 0.44 ▁sequence▁to▁an▁output▁sequence 0.391 ▁Trans 0.273 . 0.236 ▁or 0.234 ▁etc. 0.225 former 0.138 ▁that▁have▁been▁gaining▁popularity 0.091 ▁the▁problem▁of▁sequence 0.06 ▁network▁architecture 0.047 , 0.044 . 0.023 s 0.009 . 0.005 0.003 ▁text-to-speech▁transformation, 0.002 . -0.812 That▁means▁any▁task▁that -0.08 ural -0.075 ▁ne -0.068 , -0.064 ▁transduction -0.054 s -0.041 ▁This▁includes▁speech▁recognition -0.039 ural -0.038 ▁ne -0.033 ▁machine▁translation -0.029 ▁Transformer -0.028 ▁transforms▁an▁input
inputs
0.391
▁Trans
0.225
former
0.023
s
1.502 / 2
▁are▁a
6.112 / 2
▁type▁of
-0.075
▁ne
-0.08
ural
0.06 / 2
▁network▁architecture
0.138 / 5
▁that▁have▁been▁gaining▁popularity
0.044
.
-0.029 / 2
▁Transformer
-0.054
s
0.703 / 4
▁were▁developed▁to▁solve
0.091 / 4
▁the▁problem▁of▁sequence
-0.064 / 3
▁transduction
-0.068
,
0.236
▁or
-0.038
▁ne
-0.039
ural
-0.033 / 2
▁machine▁translation
0.009
.
-0.812 / 5
That▁means▁any▁task▁that
-0.028 / 4
▁transforms▁an▁input
0.44 / 5
▁sequence▁to▁an▁output▁sequence
0.002
.
-0.041 / 4
▁This▁includes▁speech▁recognition
0.047
,
0.003 / 9
▁text-to-speech▁transformation,
0.234 / 2
▁etc.
0.273
.
0.005
-4-6-8-10-202-8.59891-8.59891base value0.5815180.581518fтип(inputs)6.112 ▁type▁of 1.502 ▁are▁a 0.703 ▁were▁developed▁to▁solve 0.44 ▁sequence▁to▁an▁output▁sequence 0.391 ▁Trans 0.273 . 0.236 ▁or 0.234 ▁etc. 0.225 former 0.138 ▁that▁have▁been▁gaining▁popularity 0.091 ▁the▁problem▁of▁sequence 0.06 ▁network▁architecture 0.047 , 0.044 . 0.023 s 0.009 . 0.005 0.003 ▁text-to-speech▁transformation, 0.002 . -0.812 That▁means▁any▁task▁that -0.08 ural -0.075 ▁ne -0.068 , -0.064 ▁transduction -0.054 s -0.041 ▁This▁includes▁speech▁recognition -0.039 ural -0.038 ▁ne -0.033 ▁machine▁translation -0.029 ▁Transformer -0.028 ▁transforms▁an▁input
inputs
0.391
▁Trans
0.225
former
0.023
s
1.502 / 2
▁are▁a
6.112 / 2
▁type▁of
-0.075
▁ne
-0.08
ural
0.06 / 2
▁network▁architecture
0.138 / 5
▁that▁have▁been▁gaining▁popularity
0.044
.
-0.029 / 2
▁Transformer
-0.054
s
0.703 / 4
▁were▁developed▁to▁solve
0.091 / 4
▁the▁problem▁of▁sequence
-0.064 / 3
▁transduction
-0.068
,
0.236
▁or
-0.038
▁ne
-0.039
ural
-0.033 / 2
▁machine▁translation
0.009
.
-0.812 / 5
That▁means▁any▁task▁that
-0.028 / 4
▁transforms▁an▁input
0.44 / 5
▁sequence▁to▁an▁output▁sequence
0.002
.
-0.041 / 4
▁This▁includes▁speech▁recognition
0.047
,
0.003 / 9
▁text-to-speech▁transformation,
0.234 / 2
▁etc.
0.273
.
0.005
-2-6-10-142610-10.9755-10.9755base value-1.02376-1.02376fней(inputs)4.028 ▁ne 3.6 ural 1.673 ▁neural 0.914 ▁network▁architecture 0.321 ▁machine▁translation 0.281 ▁Trans 0.193 s 0.192 former 0.183 ▁This▁includes▁speech▁recognition 0.17 ▁Transformer 0.112 , 0.101 ▁transduction 0.083 ▁or 0.065 . 0.061 s 0.06 That▁means▁any▁task▁that 0.056 ▁are▁a 0.056 , 0.04 . 0.027 . 0.002 -0.767 ▁the▁problem▁of▁sequence -0.514 ▁type▁of -0.456 ▁were▁developed▁to▁solve -0.199 ▁sequence▁to▁an▁output▁sequence -0.141 ▁text-to-speech▁transformation, -0.091 ▁transforms▁an▁input -0.071 ▁etc. -0.024 ▁that▁have▁been▁gaining▁popularity -0.005 .
inputs
0.281
▁Trans
0.192
former
0.061
s
0.056 / 2
▁are▁a
-0.514 / 2
▁type▁of
4.028
▁ne
3.6
ural
0.914 / 2
▁network▁architecture
-0.024 / 5
▁that▁have▁been▁gaining▁popularity
0.027
.
0.17 / 2
▁Transformer
0.193
s
-0.456 / 4
▁were▁developed▁to▁solve
-0.767 / 4
▁the▁problem▁of▁sequence
0.101 / 3
▁transduction
0.112
,
0.083
▁or
1.673 / 2
▁neural
0.321 / 2
▁machine▁translation
0.04
.
0.06 / 5
That▁means▁any▁task▁that
-0.091 / 4
▁transforms▁an▁input
-0.199 / 5
▁sequence▁to▁an▁output▁sequence
-0.005
.
0.183 / 4
▁This▁includes▁speech▁recognition
0.056
,
-0.141 / 9
▁text-to-speech▁transformation,
-0.071 / 2
▁etc.
0.065
.
0.002
-6-8-10-12-4-20-10.9755-10.9755base value-1.02376-1.02376fней(inputs)4.028 ▁ne 3.6 ural 1.673 ▁neural 0.914 ▁network▁architecture 0.321 ▁machine▁translation 0.281 ▁Trans 0.193 s 0.192 former 0.183 ▁This▁includes▁speech▁recognition 0.17 ▁Transformer 0.112 , 0.101 ▁transduction 0.083 ▁or 0.065 . 0.061 s 0.06 That▁means▁any▁task▁that 0.056 ▁are▁a 0.056 , 0.04 . 0.027 . 0.002 -0.767 ▁the▁problem▁of▁sequence -0.514 ▁type▁of -0.456 ▁were▁developed▁to▁solve -0.199 ▁sequence▁to▁an▁output▁sequence -0.141 ▁text-to-speech▁transformation, -0.091 ▁transforms▁an▁input -0.071 ▁etc. -0.024 ▁that▁have▁been▁gaining▁popularity -0.005 .
inputs
0.281
▁Trans
0.192
former
0.061
s
0.056 / 2
▁are▁a
-0.514 / 2
▁type▁of
4.028
▁ne
3.6
ural
0.914 / 2
▁network▁architecture
-0.024 / 5
▁that▁have▁been▁gaining▁popularity
0.027
.
0.17 / 2
▁Transformer
0.193
s
-0.456 / 4
▁were▁developed▁to▁solve
-0.767 / 4
▁the▁problem▁of▁sequence
0.101 / 3
▁transduction
0.112
,
0.083
▁or
1.673 / 2
▁neural
0.321 / 2
▁machine▁translation
0.04
.
0.06 / 5
That▁means▁any▁task▁that
-0.091 / 4
▁transforms▁an▁input
-0.199 / 5
▁sequence▁to▁an▁output▁sequence
-0.005
.
0.183 / 4
▁This▁includes▁speech▁recognition
0.056
,
-0.141 / 9
▁text-to-speech▁transformation,
-0.071 / 2
▁etc.
0.065
.
0.002
-2-6-10-142610-0.693988-0.693988base value1.175451.17545fрон(inputs)1.209 ▁neural 0.96 ural 0.921 ▁ne 0.117 ▁machine▁translation 0.113 That▁means▁any▁task▁that 0.056 ▁sequence▁to▁an▁output▁sequence 0.016 , 0.015 0.013 ▁text-to-speech▁transformation, 0.01 . 0.009 ▁or -0.327 ▁network▁architecture -0.144 ▁that▁have▁been▁gaining▁popularity -0.138 ▁Transformer -0.119 s -0.114 ▁type▁of -0.109 ▁Trans -0.098 former -0.087 ▁transforms▁an▁input -0.069 ▁were▁developed▁to▁solve -0.06 s -0.059 ▁are▁a -0.056 . -0.056 . -0.045 ▁etc. -0.031 , -0.023 ▁This▁includes▁speech▁recognition -0.022 ▁transduction -0.011 ▁the▁problem▁of▁sequence -0.002 .
inputs
-0.109
▁Trans
-0.098
former
-0.06
s
-0.059 / 2
▁are▁a
-0.114 / 2
▁type▁of
0.921
▁ne
0.96
ural
-0.327 / 2
▁network▁architecture
-0.144 / 5
▁that▁have▁been▁gaining▁popularity
-0.056
.
-0.138 / 2
▁Transformer
-0.119
s
-0.069 / 4
▁were▁developed▁to▁solve
-0.011 / 4
▁the▁problem▁of▁sequence
-0.022 / 3
▁transduction
-0.031
,
0.009
▁or
1.209 / 2
▁neural
0.117 / 2
▁machine▁translation
-0.056
.
0.113 / 5
That▁means▁any▁task▁that
-0.087 / 4
▁transforms▁an▁input
0.056 / 5
▁sequence▁to▁an▁output▁sequence
-0.002
.
-0.023 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.013 / 9
▁text-to-speech▁transformation,
-0.045 / 2
▁etc.
0.01
.
0.015
0-1-212-0.693988-0.693988base value1.175451.17545fрон(inputs)1.209 ▁neural 0.96 ural 0.921 ▁ne 0.117 ▁machine▁translation 0.113 That▁means▁any▁task▁that 0.056 ▁sequence▁to▁an▁output▁sequence 0.016 , 0.015 0.013 ▁text-to-speech▁transformation, 0.01 . 0.009 ▁or -0.327 ▁network▁architecture -0.144 ▁that▁have▁been▁gaining▁popularity -0.138 ▁Transformer -0.119 s -0.114 ▁type▁of -0.109 ▁Trans -0.098 former -0.087 ▁transforms▁an▁input -0.069 ▁were▁developed▁to▁solve -0.06 s -0.059 ▁are▁a -0.056 . -0.056 . -0.045 ▁etc. -0.031 , -0.023 ▁This▁includes▁speech▁recognition -0.022 ▁transduction -0.011 ▁the▁problem▁of▁sequence -0.002 .
inputs
-0.109
▁Trans
-0.098
former
-0.06
s
-0.059 / 2
▁are▁a
-0.114 / 2
▁type▁of
0.921
▁ne
0.96
ural
-0.327 / 2
▁network▁architecture
-0.144 / 5
▁that▁have▁been▁gaining▁popularity
-0.056
.
-0.138 / 2
▁Transformer
-0.119
s
-0.069 / 4
▁were▁developed▁to▁solve
-0.011 / 4
▁the▁problem▁of▁sequence
-0.022 / 3
▁transduction
-0.031
,
0.009
▁or
1.209 / 2
▁neural
0.117 / 2
▁machine▁translation
-0.056
.
0.113 / 5
That▁means▁any▁task▁that
-0.087 / 4
▁transforms▁an▁input
0.056 / 5
▁sequence▁to▁an▁output▁sequence
-0.002
.
-0.023 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.013 / 9
▁text-to-speech▁transformation,
-0.045 / 2
▁etc.
0.01
.
0.015
-2-6-10-142610-2.31495-2.31495base value1.318411.31841fной(inputs)2.137 ▁network▁architecture 0.373 ural 0.264 ▁ne 0.146 ▁are▁a 0.11 ▁This▁includes▁speech▁recognition 0.11 ▁sequence▁to▁an▁output▁sequence 0.101 ▁the▁problem▁of▁sequence 0.08 That▁means▁any▁task▁that 0.079 ▁ne 0.078 ural 0.071 ▁that▁have▁been▁gaining▁popularity 0.066 ▁transforms▁an▁input 0.063 former 0.058 ▁or 0.057 . 0.052 . 0.046 s 0.032 . 0.031 ▁Trans 0.029 . 0.003 , -0.106 ▁were▁developed▁to▁solve -0.072 s -0.072 ▁Transformer -0.038 ▁text-to-speech▁transformation, -0.021 , -0.012 ▁machine▁translation -0.009 ▁etc. -0.009 -0.008 ▁transduction -0.005 ▁type▁of
inputs
0.031
▁Trans
0.063
former
0.046
s
0.146 / 2
▁are▁a
-0.005 / 2
▁type▁of
0.264
▁ne
0.373
ural
2.137 / 2
▁network▁architecture
0.071 / 5
▁that▁have▁been▁gaining▁popularity
0.057
.
-0.072 / 2
▁Transformer
-0.072
s
-0.106 / 4
▁were▁developed▁to▁solve
0.101 / 4
▁the▁problem▁of▁sequence
-0.008 / 3
▁transduction
-0.021
,
0.058
▁or
0.079
▁ne
0.078
ural
-0.012 / 2
▁machine▁translation
0.032
.
0.08 / 5
That▁means▁any▁task▁that
0.066 / 4
▁transforms▁an▁input
0.11 / 5
▁sequence▁to▁an▁output▁sequence
0.029
.
0.11 / 4
▁This▁includes▁speech▁recognition
0.003
,
-0.038 / 9
▁text-to-speech▁transformation,
-0.009 / 2
▁etc.
0.052
.
-0.009
-0-1-21-2.31495-2.31495base value1.318411.31841fной(inputs)2.137 ▁network▁architecture 0.373 ural 0.264 ▁ne 0.146 ▁are▁a 0.11 ▁This▁includes▁speech▁recognition 0.11 ▁sequence▁to▁an▁output▁sequence 0.101 ▁the▁problem▁of▁sequence 0.08 That▁means▁any▁task▁that 0.079 ▁ne 0.078 ural 0.071 ▁that▁have▁been▁gaining▁popularity 0.066 ▁transforms▁an▁input 0.063 former 0.058 ▁or 0.057 . 0.052 . 0.046 s 0.032 . 0.031 ▁Trans 0.029 . 0.003 , -0.106 ▁were▁developed▁to▁solve -0.072 s -0.072 ▁Transformer -0.038 ▁text-to-speech▁transformation, -0.021 , -0.012 ▁machine▁translation -0.009 ▁etc. -0.009 -0.008 ▁transduction -0.005 ▁type▁of
inputs
0.031
▁Trans
0.063
former
0.046
s
0.146 / 2
▁are▁a
-0.005 / 2
▁type▁of
0.264
▁ne
0.373
ural
2.137 / 2
▁network▁architecture
0.071 / 5
▁that▁have▁been▁gaining▁popularity
0.057
.
-0.072 / 2
▁Transformer
-0.072
s
-0.106 / 4
▁were▁developed▁to▁solve
0.101 / 4
▁the▁problem▁of▁sequence
-0.008 / 3
▁transduction
-0.021
,
0.058
▁or
0.079
▁ne
0.078
ural
-0.012 / 2
▁machine▁translation
0.032
.
0.08 / 5
That▁means▁any▁task▁that
0.066 / 4
▁transforms▁an▁input
0.11 / 5
▁sequence▁to▁an▁output▁sequence
0.029
.
0.11 / 4
▁This▁includes▁speech▁recognition
0.003
,
-0.038 / 9
▁text-to-speech▁transformation,
-0.009 / 2
▁etc.
0.052
.
-0.009
-2-6-10-142610-12.8566-12.8566base value-0.98516-0.98516fсетево(inputs)6.342 ▁network▁architecture 1.031 ▁ne 0.936 ural 0.547 ▁type▁of 0.541 ▁are▁a 0.392 ▁machine▁translation 0.339 ▁This▁includes▁speech▁recognition 0.311 ▁that▁have▁been▁gaining▁popularity 0.208 ▁were▁developed▁to▁solve 0.194 ▁sequence▁to▁an▁output▁sequence 0.194 ▁Trans 0.192 former 0.176 ▁transforms▁an▁input 0.156 s 0.149 ▁transduction 0.119 ▁Transformer 0.115 . 0.103 s 0.103 , 0.089 ▁text-to-speech▁transformation, 0.082 That▁means▁any▁task▁that 0.056 . 0.034 ▁etc. 0.027 , 0.021 ▁the▁problem▁of▁sequence 0.017 . -0.571 ▁neural -0.02 ▁or -0.004 . -0.003
inputs
0.194
▁Trans
0.192
former
0.156
s
0.541 / 2
▁are▁a
0.547 / 2
▁type▁of
1.031
▁ne
0.936
ural
6.342 / 2
▁network▁architecture
0.311 / 5
▁that▁have▁been▁gaining▁popularity
0.056
.
0.119 / 2
▁Transformer
0.103
s
0.208 / 4
▁were▁developed▁to▁solve
0.021 / 4
▁the▁problem▁of▁sequence
0.149 / 3
▁transduction
0.103
,
-0.02
▁or
-0.571 / 2
▁neural
0.392 / 2
▁machine▁translation
0.017
.
0.082 / 5
That▁means▁any▁task▁that
0.176 / 4
▁transforms▁an▁input
0.194 / 5
▁sequence▁to▁an▁output▁sequence
-0.004
.
0.339 / 4
▁This▁includes▁speech▁recognition
0.027
,
0.089 / 9
▁text-to-speech▁transformation,
0.034 / 2
▁etc.
0.115
.
-0.003
-7-9-11-13-5-3-1-12.8566-12.8566base value-0.98516-0.98516fсетево(inputs)6.342 ▁network▁architecture 1.031 ▁ne 0.936 ural 0.547 ▁type▁of 0.541 ▁are▁a 0.392 ▁machine▁translation 0.339 ▁This▁includes▁speech▁recognition 0.311 ▁that▁have▁been▁gaining▁popularity 0.208 ▁were▁developed▁to▁solve 0.194 ▁sequence▁to▁an▁output▁sequence 0.194 ▁Trans 0.192 former 0.176 ▁transforms▁an▁input 0.156 s 0.149 ▁transduction 0.119 ▁Transformer 0.115 . 0.103 s 0.103 , 0.089 ▁text-to-speech▁transformation, 0.082 That▁means▁any▁task▁that 0.056 . 0.034 ▁etc. 0.027 , 0.021 ▁the▁problem▁of▁sequence 0.017 . -0.571 ▁neural -0.02 ▁or -0.004 . -0.003
inputs
0.194
▁Trans
0.192
former
0.156
s
0.541 / 2
▁are▁a
0.547 / 2
▁type▁of
1.031
▁ne
0.936
ural
6.342 / 2
▁network▁architecture
0.311 / 5
▁that▁have▁been▁gaining▁popularity
0.056
.
0.119 / 2
▁Transformer
0.103
s
0.208 / 4
▁were▁developed▁to▁solve
0.021 / 4
▁the▁problem▁of▁sequence
0.149 / 3
▁transduction
0.103
,
-0.02
▁or
-0.571 / 2
▁neural
0.392 / 2
▁machine▁translation
0.017
.
0.082 / 5
That▁means▁any▁task▁that
0.176 / 4
▁transforms▁an▁input
0.194 / 5
▁sequence▁to▁an▁output▁sequence
-0.004
.
0.339 / 4
▁This▁includes▁speech▁recognition
0.027
,
0.089 / 9
▁text-to-speech▁transformation,
0.034 / 2
▁etc.
0.115
.
-0.003
-2-6-10-1426102.410872.41087base value2.404182.40418fй(inputs)0.111 ▁network▁architecture 0.043 ▁machine▁translation 0.02 That▁means▁any▁task▁that 0.012 s 0.007 ▁ne 0.007 ▁Trans 0.007 former 0.005 . 0.002 . 0.002 ▁Transformer 0.002 s 0.002 . 0.001 ural 0.0 ▁text-to-speech▁transformation, 0.0 ▁transduction -0.051 ▁neural -0.036 ▁the▁problem▁of▁sequence -0.035 ▁sequence▁to▁an▁output▁sequence -0.02 ▁This▁includes▁speech▁recognition -0.019 ▁type▁of -0.015 ▁were▁developed▁to▁solve -0.012 . -0.009 ▁or -0.009 -0.009 ▁that▁have▁been▁gaining▁popularity -0.006 , -0.006 ▁are▁a -0.001 ▁etc. -0.001 , -0.0 ▁transforms▁an▁input
inputs
0.007
▁Trans
0.007
former
0.012
s
-0.006 / 2
▁are▁a
-0.019 / 2
▁type▁of
0.007
▁ne
0.001
ural
0.111 / 2
▁network▁architecture
-0.009 / 5
▁that▁have▁been▁gaining▁popularity
0.002
.
0.002 / 2
▁Transformer
0.002
s
-0.015 / 4
▁were▁developed▁to▁solve
-0.036 / 4
▁the▁problem▁of▁sequence
0.0 / 3
▁transduction
-0.001
,
-0.009
▁or
-0.051 / 2
▁neural
0.043 / 2
▁machine▁translation
0.002
.
0.02 / 5
That▁means▁any▁task▁that
-0.0 / 4
▁transforms▁an▁input
-0.035 / 5
▁sequence▁to▁an▁output▁sequence
0.005
.
-0.02 / 4
▁This▁includes▁speech▁recognition
-0.006
,
0.0 / 9
▁text-to-speech▁transformation,
-0.001 / 2
▁etc.
-0.012
.
-0.009
2.42.32.22.52.62.410872.41087base value2.404182.40418fй(inputs)0.111 ▁network▁architecture 0.043 ▁machine▁translation 0.02 That▁means▁any▁task▁that 0.012 s 0.007 ▁ne 0.007 ▁Trans 0.007 former 0.005 . 0.002 . 0.002 ▁Transformer 0.002 s 0.002 . 0.001 ural 0.0 ▁text-to-speech▁transformation, 0.0 ▁transduction -0.051 ▁neural -0.036 ▁the▁problem▁of▁sequence -0.035 ▁sequence▁to▁an▁output▁sequence -0.02 ▁This▁includes▁speech▁recognition -0.019 ▁type▁of -0.015 ▁were▁developed▁to▁solve -0.012 . -0.009 ▁or -0.009 -0.009 ▁that▁have▁been▁gaining▁popularity -0.006 , -0.006 ▁are▁a -0.001 ▁etc. -0.001 , -0.0 ▁transforms▁an▁input
inputs
0.007
▁Trans
0.007
former
0.012
s
-0.006 / 2
▁are▁a
-0.019 / 2
▁type▁of
0.007
▁ne
0.001
ural
0.111 / 2
▁network▁architecture
-0.009 / 5
▁that▁have▁been▁gaining▁popularity
0.002
.
0.002 / 2
▁Transformer
0.002
s
-0.015 / 4
▁were▁developed▁to▁solve
-0.036 / 4
▁the▁problem▁of▁sequence
0.0 / 3
▁transduction
-0.001
,
-0.009
▁or
-0.051 / 2
▁neural
0.043 / 2
▁machine▁translation
0.002
.
0.02 / 5
That▁means▁any▁task▁that
-0.0 / 4
▁transforms▁an▁input
-0.035 / 5
▁sequence▁to▁an▁output▁sequence
0.005
.
-0.02 / 4
▁This▁includes▁speech▁recognition
-0.006
,
0.0 / 9
▁text-to-speech▁transformation,
-0.001 / 2
▁etc.
-0.012
.
-0.009
-2-6-10-142610-6.48481-6.48481base value2.600982.60098fархитектуры(inputs)8.242 ▁network▁architecture 0.414 ▁were▁developed▁to▁solve 0.364 ▁that▁have▁been▁gaining▁popularity 0.314 ▁This▁includes▁speech▁recognition 0.209 ▁type▁of 0.147 ural 0.146 ▁ne 0.13 ▁machine▁translation 0.117 . 0.105 That▁means▁any▁task▁that 0.097 ▁are▁a 0.062 , 0.04 ▁the▁problem▁of▁sequence 0.013 . 0.007 0.001 . -0.267 ▁sequence▁to▁an▁output▁sequence -0.19 ▁transduction -0.138 s -0.132 ▁Transformer -0.118 ▁transforms▁an▁input -0.116 , -0.074 ▁ne -0.072 ural -0.068 ▁or -0.051 . -0.036 ▁Trans -0.033 ▁text-to-speech▁transformation, -0.017 former -0.008 ▁etc. -0.005 s
inputs
-0.036
▁Trans
-0.017
former
-0.005
s
0.097 / 2
▁are▁a
0.209 / 2
▁type▁of
0.146
▁ne
0.147
ural
8.242 / 2
▁network▁architecture
0.364 / 5
▁that▁have▁been▁gaining▁popularity
0.117
.
-0.132 / 2
▁Transformer
-0.138
s
0.414 / 4
▁were▁developed▁to▁solve
0.04 / 4
▁the▁problem▁of▁sequence
-0.19 / 3
▁transduction
-0.116
,
-0.068
▁or
-0.074
▁ne
-0.072
ural
0.13 / 2
▁machine▁translation
0.001
.
0.105 / 5
That▁means▁any▁task▁that
-0.118 / 4
▁transforms▁an▁input
-0.267 / 5
▁sequence▁to▁an▁output▁sequence
-0.051
.
0.314 / 4
▁This▁includes▁speech▁recognition
0.062
,
-0.033 / 9
▁text-to-speech▁transformation,
-0.008 / 2
▁etc.
0.013
.
0.007
-2-4-6024-6.48481-6.48481base value2.600982.60098fархитектуры(inputs)8.242 ▁network▁architecture 0.414 ▁were▁developed▁to▁solve 0.364 ▁that▁have▁been▁gaining▁popularity 0.314 ▁This▁includes▁speech▁recognition 0.209 ▁type▁of 0.147 ural 0.146 ▁ne 0.13 ▁machine▁translation 0.117 . 0.105 That▁means▁any▁task▁that 0.097 ▁are▁a 0.062 , 0.04 ▁the▁problem▁of▁sequence 0.013 . 0.007 0.001 . -0.267 ▁sequence▁to▁an▁output▁sequence -0.19 ▁transduction -0.138 s -0.132 ▁Transformer -0.118 ▁transforms▁an▁input -0.116 , -0.074 ▁ne -0.072 ural -0.068 ▁or -0.051 . -0.036 ▁Trans -0.033 ▁text-to-speech▁transformation, -0.017 former -0.008 ▁etc. -0.005 s
inputs
-0.036
▁Trans
-0.017
former
-0.005
s
0.097 / 2
▁are▁a
0.209 / 2
▁type▁of
0.146
▁ne
0.147
ural
8.242 / 2
▁network▁architecture
0.364 / 5
▁that▁have▁been▁gaining▁popularity
0.117
.
-0.132 / 2
▁Transformer
-0.138
s
0.414 / 4
▁were▁developed▁to▁solve
0.04 / 4
▁the▁problem▁of▁sequence
-0.19 / 3
▁transduction
-0.116
,
-0.068
▁or
-0.074
▁ne
-0.072
ural
0.13 / 2
▁machine▁translation
0.001
.
0.105 / 5
That▁means▁any▁task▁that
-0.118 / 4
▁transforms▁an▁input
-0.267 / 5
▁sequence▁to▁an▁output▁sequence
-0.051
.
0.314 / 4
▁This▁includes▁speech▁recognition
0.062
,
-0.033 / 9
▁text-to-speech▁transformation,
-0.008 / 2
▁etc.
0.013
.
0.007
-2-6-10-142610-2.35746-2.35746base value1.577041.57704f,(inputs)2.015 ▁that▁have▁been▁gaining▁popularity 0.585 ▁network▁architecture 0.247 . 0.178 ▁the▁problem▁of▁sequence 0.155 ▁were▁developed▁to▁solve 0.137 , 0.099 ▁are▁a 0.09 . 0.081 ▁or 0.072 ▁type▁of 0.064 . 0.064 That▁means▁any▁task▁that 0.061 ▁ne 0.051 ▁This▁includes▁speech▁recognition 0.051 ▁text-to-speech▁transformation, 0.045 ural 0.029 , 0.025 ▁transduction 0.024 ▁etc. 0.024 ▁Trans 0.01 ▁Transformer 0.008 former 0.006 s 0.002 ▁sequence▁to▁an▁output▁sequence -0.047 ▁machine▁translation -0.044 ural -0.042 ▁ne -0.03 s -0.017 -0.007 . -0.001 ▁transforms▁an▁input
inputs
0.024
▁Trans
0.008
former
-0.03
s
0.099 / 2
▁are▁a
0.072 / 2
▁type▁of
0.061
▁ne
0.045
ural
0.585 / 2
▁network▁architecture
2.015 / 5
▁that▁have▁been▁gaining▁popularity
0.247
.
0.01 / 2
▁Transformer
0.006
s
0.155 / 4
▁were▁developed▁to▁solve
0.178 / 4
▁the▁problem▁of▁sequence
0.025 / 3
▁transduction
0.029
,
0.081
▁or
-0.042
▁ne
-0.044
ural
-0.047 / 2
▁machine▁translation
-0.007
.
0.064 / 5
That▁means▁any▁task▁that
-0.001 / 4
▁transforms▁an▁input
0.002 / 5
▁sequence▁to▁an▁output▁sequence
0.064
.
0.051 / 4
▁This▁includes▁speech▁recognition
0.137
,
0.051 / 9
▁text-to-speech▁transformation,
0.024 / 2
▁etc.
0.09
.
-0.017
-0-1-21-2.35746-2.35746base value1.577041.57704f,(inputs)2.015 ▁that▁have▁been▁gaining▁popularity 0.585 ▁network▁architecture 0.247 . 0.178 ▁the▁problem▁of▁sequence 0.155 ▁were▁developed▁to▁solve 0.137 , 0.099 ▁are▁a 0.09 . 0.081 ▁or 0.072 ▁type▁of 0.064 . 0.064 That▁means▁any▁task▁that 0.061 ▁ne 0.051 ▁This▁includes▁speech▁recognition 0.051 ▁text-to-speech▁transformation, 0.045 ural 0.029 , 0.025 ▁transduction 0.024 ▁etc. 0.024 ▁Trans 0.01 ▁Transformer 0.008 former 0.006 s 0.002 ▁sequence▁to▁an▁output▁sequence -0.047 ▁machine▁translation -0.044 ural -0.042 ▁ne -0.03 s -0.017 -0.007 . -0.001 ▁transforms▁an▁input
inputs
0.024
▁Trans
0.008
former
-0.03
s
0.099 / 2
▁are▁a
0.072 / 2
▁type▁of
0.061
▁ne
0.045
ural
0.585 / 2
▁network▁architecture
2.015 / 5
▁that▁have▁been▁gaining▁popularity
0.247
.
0.01 / 2
▁Transformer
0.006
s
0.155 / 4
▁were▁developed▁to▁solve
0.178 / 4
▁the▁problem▁of▁sequence
0.025 / 3
▁transduction
0.029
,
0.081
▁or
-0.042
▁ne
-0.044
ural
-0.047 / 2
▁machine▁translation
-0.007
.
0.064 / 5
That▁means▁any▁task▁that
-0.001 / 4
▁transforms▁an▁input
0.002 / 5
▁sequence▁to▁an▁output▁sequence
0.064
.
0.051 / 4
▁This▁includes▁speech▁recognition
0.137
,
0.051 / 9
▁text-to-speech▁transformation,
0.024 / 2
▁etc.
0.09
.
-0.017
-2-6-10-142610-2.55688-2.55688base value0.3347150.334715fкоторая(inputs)1.755 ▁that▁have▁been▁gaining▁popularity 0.401 . 0.344 ▁type▁of 0.341 ▁were▁developed▁to▁solve 0.259 That▁means▁any▁task▁that 0.225 ▁are▁a 0.125 ▁Trans 0.09 s 0.085 ▁sequence▁to▁an▁output▁sequence 0.079 ▁the▁problem▁of▁sequence 0.058 former 0.055 ural 0.034 ▁transforms▁an▁input 0.028 ural 0.027 ▁ne 0.027 ▁ne 0.021 . 0.002 ▁This▁includes▁speech▁recognition -0.345 ▁text-to-speech▁transformation, -0.191 ▁machine▁translation -0.137 , -0.11 ▁network▁architecture -0.097 . -0.034 ▁etc. -0.031 ▁Transformer -0.031 . -0.025 , -0.021 ▁or -0.016 ▁transduction -0.014 -0.013 s
inputs
0.125
▁Trans
0.058
former
0.09
s
0.225 / 2
▁are▁a
0.344 / 2
▁type▁of
0.027
▁ne
0.055
ural
-0.11 / 2
▁network▁architecture
1.755 / 5
▁that▁have▁been▁gaining▁popularity
0.401
.
-0.031 / 2
▁Transformer
-0.013
s
0.341 / 4
▁were▁developed▁to▁solve
0.079 / 4
▁the▁problem▁of▁sequence
-0.016 / 3
▁transduction
-0.025
,
-0.021
▁or
0.027
▁ne
0.028
ural
-0.191 / 2
▁machine▁translation
0.021
.
0.259 / 5
That▁means▁any▁task▁that
0.034 / 4
▁transforms▁an▁input
0.085 / 5
▁sequence▁to▁an▁output▁sequence
-0.031
.
0.002 / 4
▁This▁includes▁speech▁recognition
-0.137
,
-0.345 / 9
▁text-to-speech▁transformation,
-0.034 / 2
▁etc.
-0.097
.
-0.014
-1-2-301-2.55688-2.55688base value0.3347150.334715fкоторая(inputs)1.755 ▁that▁have▁been▁gaining▁popularity 0.401 . 0.344 ▁type▁of 0.341 ▁were▁developed▁to▁solve 0.259 That▁means▁any▁task▁that 0.225 ▁are▁a 0.125 ▁Trans 0.09 s 0.085 ▁sequence▁to▁an▁output▁sequence 0.079 ▁the▁problem▁of▁sequence 0.058 former 0.055 ural 0.034 ▁transforms▁an▁input 0.028 ural 0.027 ▁ne 0.027 ▁ne 0.021 . 0.002 ▁This▁includes▁speech▁recognition -0.345 ▁text-to-speech▁transformation, -0.191 ▁machine▁translation -0.137 , -0.11 ▁network▁architecture -0.097 . -0.034 ▁etc. -0.031 ▁Transformer -0.031 . -0.025 , -0.021 ▁or -0.016 ▁transduction -0.014 -0.013 s
inputs
0.125
▁Trans
0.058
former
0.09
s
0.225 / 2
▁are▁a
0.344 / 2
▁type▁of
0.027
▁ne
0.055
ural
-0.11 / 2
▁network▁architecture
1.755 / 5
▁that▁have▁been▁gaining▁popularity
0.401
.
-0.031 / 2
▁Transformer
-0.013
s
0.341 / 4
▁were▁developed▁to▁solve
0.079 / 4
▁the▁problem▁of▁sequence
-0.016 / 3
▁transduction
-0.025
,
-0.021
▁or
0.027
▁ne
0.028
ural
-0.191 / 2
▁machine▁translation
0.021
.
0.259 / 5
That▁means▁any▁task▁that
0.034 / 4
▁transforms▁an▁input
0.085 / 5
▁sequence▁to▁an▁output▁sequence
-0.031
.
0.002 / 4
▁This▁includes▁speech▁recognition
-0.137
,
-0.345 / 9
▁text-to-speech▁transformation,
-0.034 / 2
▁etc.
-0.097
.
-0.014
-2-6-10-142610-5.40969-5.40969base value-0.852197-0.852197fстановится(inputs)4.499 ▁that▁have▁been▁gaining▁popularity 1.127 . 0.167 ▁transforms▁an▁input 0.088 . 0.086 ▁text-to-speech▁transformation, 0.051 ▁are▁a 0.026 ▁sequence▁to▁an▁output▁sequence 0.021 . 0.02 ▁or 0.015 ▁the▁problem▁of▁sequence 0.011 ▁transduction 0.009 ▁etc. 0.005 ▁ne 0.005 -0.287 ▁were▁developed▁to▁solve -0.249 ▁This▁includes▁speech▁recognition -0.21 ▁network▁architecture -0.209 That▁means▁any▁task▁that -0.112 ural -0.112 ▁ne -0.104 ▁type▁of -0.091 ▁machine▁translation -0.045 former -0.037 ▁Trans -0.03 s -0.03 , -0.023 . -0.022 s -0.005 ▁Transformer -0.003 ural -0.001 ,
inputs
-0.037
▁Trans
-0.045
former
-0.03
s
0.051 / 2
▁are▁a
-0.104 / 2
▁type▁of
0.005
▁ne
-0.003
ural
-0.21 / 2
▁network▁architecture
4.499 / 5
▁that▁have▁been▁gaining▁popularity
1.127
.
-0.005 / 2
▁Transformer
-0.022
s
-0.287 / 4
▁were▁developed▁to▁solve
0.015 / 4
▁the▁problem▁of▁sequence
0.011 / 3
▁transduction
-0.001
,
0.02
▁or
-0.112
▁ne
-0.112
ural
-0.091 / 2
▁machine▁translation
0.021
.
-0.209 / 5
That▁means▁any▁task▁that
0.167 / 4
▁transforms▁an▁input
0.026 / 5
▁sequence▁to▁an▁output▁sequence
-0.023
.
-0.249 / 4
▁This▁includes▁speech▁recognition
-0.03
,
0.086 / 9
▁text-to-speech▁transformation,
0.009 / 2
▁etc.
0.088
.
0.005
-3-4-5-6-7-2-10-5.40969-5.40969base value-0.852197-0.852197fстановится(inputs)4.499 ▁that▁have▁been▁gaining▁popularity 1.127 . 0.167 ▁transforms▁an▁input 0.088 . 0.086 ▁text-to-speech▁transformation, 0.051 ▁are▁a 0.026 ▁sequence▁to▁an▁output▁sequence 0.021 . 0.02 ▁or 0.015 ▁the▁problem▁of▁sequence 0.011 ▁transduction 0.009 ▁etc. 0.005 ▁ne 0.005 -0.287 ▁were▁developed▁to▁solve -0.249 ▁This▁includes▁speech▁recognition -0.21 ▁network▁architecture -0.209 That▁means▁any▁task▁that -0.112 ural -0.112 ▁ne -0.104 ▁type▁of -0.091 ▁machine▁translation -0.045 former -0.037 ▁Trans -0.03 s -0.03 , -0.023 . -0.022 s -0.005 ▁Transformer -0.003 ural -0.001 ,
inputs
-0.037
▁Trans
-0.045
former
-0.03
s
0.051 / 2
▁are▁a
-0.104 / 2
▁type▁of
0.005
▁ne
-0.003
ural
-0.21 / 2
▁network▁architecture
4.499 / 5
▁that▁have▁been▁gaining▁popularity
1.127
.
-0.005 / 2
▁Transformer
-0.022
s
-0.287 / 4
▁were▁developed▁to▁solve
0.015 / 4
▁the▁problem▁of▁sequence
0.011 / 3
▁transduction
-0.001
,
0.02
▁or
-0.112
▁ne
-0.112
ural
-0.091 / 2
▁machine▁translation
0.021
.
-0.209 / 5
That▁means▁any▁task▁that
0.167 / 4
▁transforms▁an▁input
0.026 / 5
▁sequence▁to▁an▁output▁sequence
-0.023
.
-0.249 / 4
▁This▁includes▁speech▁recognition
-0.03
,
0.086 / 9
▁text-to-speech▁transformation,
0.009 / 2
▁etc.
0.088
.
0.005
-2-6-10-142610-3.59219-3.59219base value0.3772920.377292fвсе(inputs)3.214 ▁that▁have▁been▁gaining▁popularity 0.903 . 0.091 ▁etc. 0.086 ▁the▁problem▁of▁sequence 0.082 ▁text-to-speech▁transformation, 0.064 ▁network▁architecture 0.061 ▁Trans 0.04 , 0.04 ▁are▁a 0.039 ural 0.033 ▁transduction 0.03 ▁ne 0.029 former 0.02 ▁ne 0.02 . 0.019 ural 0.018 . 0.017 . 0.014 , 0.012 s 0.011 ▁Transformer 0.009 ▁were▁developed▁to▁solve 0.005 That▁means▁any▁task▁that 0.005 ▁type▁of 0.0 s -0.295 ▁sequence▁to▁an▁output▁sequence -0.281 ▁transforms▁an▁input -0.23 ▁This▁includes▁speech▁recognition -0.052 ▁or -0.018 -0.015 ▁machine▁translation
inputs
0.061
▁Trans
0.029
former
0.012
s
0.04 / 2
▁are▁a
0.005 / 2
▁type▁of
0.03
▁ne
0.039
ural
0.064 / 2
▁network▁architecture
3.214 / 5
▁that▁have▁been▁gaining▁popularity
0.903
.
0.011 / 2
▁Transformer
0.0
s
0.009 / 4
▁were▁developed▁to▁solve
0.086 / 4
▁the▁problem▁of▁sequence
0.033 / 3
▁transduction
0.014
,
-0.052
▁or
0.02
▁ne
0.019
ural
-0.015 / 2
▁machine▁translation
0.018
.
0.005 / 5
That▁means▁any▁task▁that
-0.281 / 4
▁transforms▁an▁input
-0.295 / 5
▁sequence▁to▁an▁output▁sequence
0.017
.
-0.23 / 4
▁This▁includes▁speech▁recognition
0.04
,
0.082 / 9
▁text-to-speech▁transformation,
0.091 / 2
▁etc.
0.02
.
-0.018
-2-3-4-101-3.59219-3.59219base value0.3772920.377292fвсе(inputs)3.214 ▁that▁have▁been▁gaining▁popularity 0.903 . 0.091 ▁etc. 0.086 ▁the▁problem▁of▁sequence 0.082 ▁text-to-speech▁transformation, 0.064 ▁network▁architecture 0.061 ▁Trans 0.04 , 0.04 ▁are▁a 0.039 ural 0.033 ▁transduction 0.03 ▁ne 0.029 former 0.02 ▁ne 0.02 . 0.019 ural 0.018 . 0.017 . 0.014 , 0.012 s 0.011 ▁Transformer 0.009 ▁were▁developed▁to▁solve 0.005 That▁means▁any▁task▁that 0.005 ▁type▁of 0.0 s -0.295 ▁sequence▁to▁an▁output▁sequence -0.281 ▁transforms▁an▁input -0.23 ▁This▁includes▁speech▁recognition -0.052 ▁or -0.018 -0.015 ▁machine▁translation
inputs
0.061
▁Trans
0.029
former
0.012
s
0.04 / 2
▁are▁a
0.005 / 2
▁type▁of
0.03
▁ne
0.039
ural
0.064 / 2
▁network▁architecture
3.214 / 5
▁that▁have▁been▁gaining▁popularity
0.903
.
0.011 / 2
▁Transformer
0.0
s
0.009 / 4
▁were▁developed▁to▁solve
0.086 / 4
▁the▁problem▁of▁sequence
0.033 / 3
▁transduction
0.014
,
-0.052
▁or
0.02
▁ne
0.019
ural
-0.015 / 2
▁machine▁translation
0.018
.
0.005 / 5
That▁means▁any▁task▁that
-0.281 / 4
▁transforms▁an▁input
-0.295 / 5
▁sequence▁to▁an▁output▁sequence
0.017
.
-0.23 / 4
▁This▁includes▁speech▁recognition
0.04
,
0.082 / 9
▁text-to-speech▁transformation,
0.091 / 2
▁etc.
0.02
.
-0.018
-2-6-10-1426100.3980090.398009base value0.9813350.981335fболее(inputs)0.304 ▁that▁have▁been▁gaining▁popularity 0.175 . 0.142 ▁text-to-speech▁transformation, 0.128 ▁etc. 0.107 ▁the▁problem▁of▁sequence 0.085 . 0.07 ▁transforms▁an▁input 0.062 ▁or 0.037 . 0.034 . 0.032 ▁were▁developed▁to▁solve 0.029 , 0.017 ▁type▁of 0.007 ▁This▁includes▁speech▁recognition 0.004 0.0 ▁transduction -0.144 That▁means▁any▁task▁that -0.1 ▁machine▁translation -0.071 ▁sequence▁to▁an▁output▁sequence -0.07 ▁network▁architecture -0.052 ▁Trans -0.045 s -0.042 s -0.038 former -0.022 ▁Transformer -0.013 ural -0.013 ▁ne -0.013 ural -0.012 , -0.007 ▁are▁a -0.007 ▁ne
inputs
-0.052
▁Trans
-0.038
former
-0.045
s
-0.007 / 2
▁are▁a
0.017 / 2
▁type▁of
-0.007
▁ne
-0.013
ural
-0.07 / 2
▁network▁architecture
0.304 / 5
▁that▁have▁been▁gaining▁popularity
0.085
.
-0.022 / 2
▁Transformer
-0.042
s
0.032 / 4
▁were▁developed▁to▁solve
0.107 / 4
▁the▁problem▁of▁sequence
0.0 / 3
▁transduction
-0.012
,
0.062
▁or
-0.013
▁ne
-0.013
ural
-0.1 / 2
▁machine▁translation
0.034
.
-0.144 / 5
That▁means▁any▁task▁that
0.07 / 4
▁transforms▁an▁input
-0.071 / 5
▁sequence▁to▁an▁output▁sequence
0.037
.
0.007 / 4
▁This▁includes▁speech▁recognition
0.029
,
0.142 / 9
▁text-to-speech▁transformation,
0.128 / 2
▁etc.
0.175
.
0.004
0.70.40.1-0.211.31.60.3980090.398009base value0.9813350.981335fболее(inputs)0.304 ▁that▁have▁been▁gaining▁popularity 0.175 . 0.142 ▁text-to-speech▁transformation, 0.128 ▁etc. 0.107 ▁the▁problem▁of▁sequence 0.085 . 0.07 ▁transforms▁an▁input 0.062 ▁or 0.037 . 0.034 . 0.032 ▁were▁developed▁to▁solve 0.029 , 0.017 ▁type▁of 0.007 ▁This▁includes▁speech▁recognition 0.004 0.0 ▁transduction -0.144 That▁means▁any▁task▁that -0.1 ▁machine▁translation -0.071 ▁sequence▁to▁an▁output▁sequence -0.07 ▁network▁architecture -0.052 ▁Trans -0.045 s -0.042 s -0.038 former -0.022 ▁Transformer -0.013 ural -0.013 ▁ne -0.013 ural -0.012 , -0.007 ▁are▁a -0.007 ▁ne
inputs
-0.052
▁Trans
-0.038
former
-0.045
s
-0.007 / 2
▁are▁a
0.017 / 2
▁type▁of
-0.007
▁ne
-0.013
ural
-0.07 / 2
▁network▁architecture
0.304 / 5
▁that▁have▁been▁gaining▁popularity
0.085
.
-0.022 / 2
▁Transformer
-0.042
s
0.032 / 4
▁were▁developed▁to▁solve
0.107 / 4
▁the▁problem▁of▁sequence
0.0 / 3
▁transduction
-0.012
,
0.062
▁or
-0.013
▁ne
-0.013
ural
-0.1 / 2
▁machine▁translation
0.034
.
-0.144 / 5
That▁means▁any▁task▁that
0.07 / 4
▁transforms▁an▁input
-0.071 / 5
▁sequence▁to▁an▁output▁sequence
0.037
.
0.007 / 4
▁This▁includes▁speech▁recognition
0.029
,
0.142 / 9
▁text-to-speech▁transformation,
0.128 / 2
▁etc.
0.175
.
0.004
-2-6-10-142610-3.96991-3.96991base value2.640682.64068fпопулярно(inputs)5.09 ▁that▁have▁been▁gaining▁popularity 1.346 . 0.234 ▁network▁architecture 0.231 ▁This▁includes▁speech▁recognition 0.13 ▁type▁of 0.101 ▁are▁a 0.058 ▁ne 0.055 ▁were▁developed▁to▁solve 0.055 ural 0.053 ▁Trans 0.048 s 0.048 former 0.047 ▁Transformer 0.029 , 0.019 0.016 s 0.011 ▁ne 0.01 ural -0.189 ▁transforms▁an▁input -0.179 . -0.176 ▁text-to-speech▁transformation, -0.111 ▁etc. -0.078 ▁the▁problem▁of▁sequence -0.055 ▁machine▁translation -0.049 ▁or -0.048 . -0.041 ▁sequence▁to▁an▁output▁sequence -0.034 . -0.007 ▁transduction -0.003 That▁means▁any▁task▁that -0.001 ,
inputs
0.053
▁Trans
0.048
former
0.016
s
0.101 / 2
▁are▁a
0.13 / 2
▁type▁of
0.058
▁ne
0.055
ural
0.234 / 2
▁network▁architecture
5.09 / 5
▁that▁have▁been▁gaining▁popularity
1.346
.
0.047 / 2
▁Transformer
0.048
s
0.055 / 4
▁were▁developed▁to▁solve
-0.078 / 4
▁the▁problem▁of▁sequence
-0.007 / 3
▁transduction
-0.001
,
-0.049
▁or
0.011
▁ne
0.01
ural
-0.055 / 2
▁machine▁translation
-0.048
.
-0.003 / 5
That▁means▁any▁task▁that
-0.189 / 4
▁transforms▁an▁input
-0.041 / 5
▁sequence▁to▁an▁output▁sequence
-0.034
.
0.231 / 4
▁This▁includes▁speech▁recognition
0.029
,
-0.176 / 9
▁text-to-speech▁transformation,
-0.111 / 2
▁etc.
-0.179
.
0.019
-1-2-3-4-50123-3.96991-3.96991base value2.640682.64068fпопулярно(inputs)5.09 ▁that▁have▁been▁gaining▁popularity 1.346 . 0.234 ▁network▁architecture 0.231 ▁This▁includes▁speech▁recognition 0.13 ▁type▁of 0.101 ▁are▁a 0.058 ▁ne 0.055 ▁were▁developed▁to▁solve 0.055 ural 0.053 ▁Trans 0.048 s 0.048 former 0.047 ▁Transformer 0.029 , 0.019 0.016 s 0.011 ▁ne 0.01 ural -0.189 ▁transforms▁an▁input -0.179 . -0.176 ▁text-to-speech▁transformation, -0.111 ▁etc. -0.078 ▁the▁problem▁of▁sequence -0.055 ▁machine▁translation -0.049 ▁or -0.048 . -0.041 ▁sequence▁to▁an▁output▁sequence -0.034 . -0.007 ▁transduction -0.003 That▁means▁any▁task▁that -0.001 ,
inputs
0.053
▁Trans
0.048
former
0.016
s
0.101 / 2
▁are▁a
0.13 / 2
▁type▁of
0.058
▁ne
0.055
ural
0.234 / 2
▁network▁architecture
5.09 / 5
▁that▁have▁been▁gaining▁popularity
1.346
.
0.047 / 2
▁Transformer
0.048
s
0.055 / 4
▁were▁developed▁to▁solve
-0.078 / 4
▁the▁problem▁of▁sequence
-0.007 / 3
▁transduction
-0.001
,
-0.049
▁or
0.011
▁ne
0.01
ural
-0.055 / 2
▁machine▁translation
-0.048
.
-0.003 / 5
That▁means▁any▁task▁that
-0.189 / 4
▁transforms▁an▁input
-0.041 / 5
▁sequence▁to▁an▁output▁sequence
-0.034
.
0.231 / 4
▁This▁includes▁speech▁recognition
0.029
,
-0.176 / 9
▁text-to-speech▁transformation,
-0.111 / 2
▁etc.
-0.179
.
0.019
-2-6-10-1426102.475712.47571base value2.665882.66588fй(inputs)0.071 . 0.068 ▁were▁developed▁to▁solve 0.039 ▁Transformer 0.028 ▁machine▁translation 0.027 s 0.026 ▁network▁architecture 0.025 That▁means▁any▁task▁that 0.025 ▁text-to-speech▁transformation, 0.024 ▁or 0.014 ▁transduction 0.012 ural 0.012 ▁ne 0.008 ▁etc. 0.007 s 0.007 , 0.006 ▁ne 0.006 former 0.006 ural -0.085 ▁that▁have▁been▁gaining▁popularity -0.029 ▁sequence▁to▁an▁output▁sequence -0.026 ▁This▁includes▁speech▁recognition -0.017 ▁type▁of -0.016 . -0.012 ▁the▁problem▁of▁sequence -0.009 ▁transforms▁an▁input -0.008 ▁Trans -0.007 . -0.004 . -0.003 ▁are▁a -0.002 -0.002 ,
inputs
-0.008
▁Trans
0.006
former
0.007
s
-0.003 / 2
▁are▁a
-0.017 / 2
▁type▁of
0.006
▁ne
0.006
ural
0.026 / 2
▁network▁architecture
-0.085 / 5
▁that▁have▁been▁gaining▁popularity
0.071
.
0.039 / 2
▁Transformer
0.027
s
0.068 / 4
▁were▁developed▁to▁solve
-0.012 / 4
▁the▁problem▁of▁sequence
0.014 / 3
▁transduction
0.007
,
0.024
▁or
0.012
▁ne
0.012
ural
0.028 / 2
▁machine▁translation
-0.004
.
0.025 / 5
That▁means▁any▁task▁that
-0.009 / 4
▁transforms▁an▁input
-0.029 / 5
▁sequence▁to▁an▁output▁sequence
-0.007
.
-0.026 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.025 / 9
▁text-to-speech▁transformation,
0.008 / 2
▁etc.
-0.016
.
-0.002
2.62.52.42.32.72.82.475712.47571base value2.665882.66588fй(inputs)0.071 . 0.068 ▁were▁developed▁to▁solve 0.039 ▁Transformer 0.028 ▁machine▁translation 0.027 s 0.026 ▁network▁architecture 0.025 That▁means▁any▁task▁that 0.025 ▁text-to-speech▁transformation, 0.024 ▁or 0.014 ▁transduction 0.012 ural 0.012 ▁ne 0.008 ▁etc. 0.007 s 0.007 , 0.006 ▁ne 0.006 former 0.006 ural -0.085 ▁that▁have▁been▁gaining▁popularity -0.029 ▁sequence▁to▁an▁output▁sequence -0.026 ▁This▁includes▁speech▁recognition -0.017 ▁type▁of -0.016 . -0.012 ▁the▁problem▁of▁sequence -0.009 ▁transforms▁an▁input -0.008 ▁Trans -0.007 . -0.004 . -0.003 ▁are▁a -0.002 -0.002 ,
inputs
-0.008
▁Trans
0.006
former
0.007
s
-0.003 / 2
▁are▁a
-0.017 / 2
▁type▁of
0.006
▁ne
0.006
ural
0.026 / 2
▁network▁architecture
-0.085 / 5
▁that▁have▁been▁gaining▁popularity
0.071
.
0.039 / 2
▁Transformer
0.027
s
0.068 / 4
▁were▁developed▁to▁solve
-0.012 / 4
▁the▁problem▁of▁sequence
0.014 / 3
▁transduction
0.007
,
0.024
▁or
0.012
▁ne
0.012
ural
0.028 / 2
▁machine▁translation
-0.004
.
0.025 / 5
That▁means▁any▁task▁that
-0.009 / 4
▁transforms▁an▁input
-0.029 / 5
▁sequence▁to▁an▁output▁sequence
-0.007
.
-0.026 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.025 / 9
▁text-to-speech▁transformation,
0.008 / 2
▁etc.
-0.016
.
-0.002
-2-6-10-142610-1.01625-1.01625base value1.795351.79535f.(inputs)1.059 ▁that▁have▁been▁gaining▁popularity 0.964 . 0.422 ▁Transformer 0.346 s 0.147 That▁means▁any▁task▁that 0.146 ▁This▁includes▁speech▁recognition 0.139 s 0.095 ▁sequence▁to▁an▁output▁sequence 0.073 ▁transforms▁an▁input 0.053 ▁were▁developed▁to▁solve 0.033 ▁text-to-speech▁transformation, 0.032 former 0.014 ▁are▁a 0.009 0.005 ▁Trans -0.1 . -0.084 ▁etc. -0.083 ▁or -0.06 ▁the▁problem▁of▁sequence -0.051 ▁machine▁translation -0.049 ural -0.049 ▁type▁of -0.037 ▁ne -0.034 ▁network▁architecture -0.034 ural -0.03 . -0.027 ▁ne -0.025 ▁transduction -0.024 , -0.019 . -0.019 ,
inputs
0.005
▁Trans
0.032
former
0.139
s
0.014 / 2
▁are▁a
-0.049 / 2
▁type▁of
-0.037
▁ne
-0.049
ural
-0.034 / 2
▁network▁architecture
1.059 / 5
▁that▁have▁been▁gaining▁popularity
0.964
.
0.422 / 2
▁Transformer
0.346
s
0.053 / 4
▁were▁developed▁to▁solve
-0.06 / 4
▁the▁problem▁of▁sequence
-0.025 / 3
▁transduction
-0.019
,
-0.083
▁or
-0.027
▁ne
-0.034
ural
-0.051 / 2
▁machine▁translation
-0.1
.
0.147 / 5
That▁means▁any▁task▁that
0.073 / 4
▁transforms▁an▁input
0.095 / 5
▁sequence▁to▁an▁output▁sequence
-0.03
.
0.146 / 4
▁This▁includes▁speech▁recognition
-0.024
,
0.033 / 9
▁text-to-speech▁transformation,
-0.084 / 2
▁etc.
-0.019
.
0.009
0-112-1.01625-1.01625base value1.795351.79535f.(inputs)1.059 ▁that▁have▁been▁gaining▁popularity 0.964 . 0.422 ▁Transformer 0.346 s 0.147 That▁means▁any▁task▁that 0.146 ▁This▁includes▁speech▁recognition 0.139 s 0.095 ▁sequence▁to▁an▁output▁sequence 0.073 ▁transforms▁an▁input 0.053 ▁were▁developed▁to▁solve 0.033 ▁text-to-speech▁transformation, 0.032 former 0.014 ▁are▁a 0.009 0.005 ▁Trans -0.1 . -0.084 ▁etc. -0.083 ▁or -0.06 ▁the▁problem▁of▁sequence -0.051 ▁machine▁translation -0.049 ural -0.049 ▁type▁of -0.037 ▁ne -0.034 ▁network▁architecture -0.034 ural -0.03 . -0.027 ▁ne -0.025 ▁transduction -0.024 , -0.019 . -0.019 ,
inputs
0.005
▁Trans
0.032
former
0.139
s
0.014 / 2
▁are▁a
-0.049 / 2
▁type▁of
-0.037
▁ne
-0.049
ural
-0.034 / 2
▁network▁architecture
1.059 / 5
▁that▁have▁been▁gaining▁popularity
0.964
.
0.422 / 2
▁Transformer
0.346
s
0.053 / 4
▁were▁developed▁to▁solve
-0.06 / 4
▁the▁problem▁of▁sequence
-0.025 / 3
▁transduction
-0.019
,
-0.083
▁or
-0.027
▁ne
-0.034
ural
-0.051 / 2
▁machine▁translation
-0.1
.
0.147 / 5
That▁means▁any▁task▁that
0.073 / 4
▁transforms▁an▁input
0.095 / 5
▁sequence▁to▁an▁output▁sequence
-0.03
.
0.146 / 4
▁This▁includes▁speech▁recognition
-0.024
,
0.033 / 9
▁text-to-speech▁transformation,
-0.084 / 2
▁etc.
-0.019
.
0.009
-2-6-10-142610-5.83721-5.83721base value1.709531.70953f(inputs)1.37 ▁that▁have▁been▁gaining▁popularity 1.229 ▁Transformer 1.026 . 0.884 s 0.694 ▁were▁developed▁to▁solve 0.466 ▁network▁architecture 0.293 s 0.28 ▁sequence▁to▁an▁output▁sequence 0.274 ural 0.249 ▁ne 0.225 That▁means▁any▁task▁that 0.214 ▁transduction 0.185 ▁Trans 0.184 ▁transforms▁an▁input 0.17 former 0.161 ▁type▁of 0.159 . 0.142 , 0.09 ▁text-to-speech▁transformation, 0.055 ▁ne 0.049 . 0.044 ural 0.035 ▁are▁a 0.033 ▁machine▁translation 0.025 , -0.473 ▁This▁includes▁speech▁recognition -0.251 ▁the▁problem▁of▁sequence -0.099 ▁etc. -0.074 ▁or -0.072 . -0.019
inputs
0.185
▁Trans
0.17
former
0.293
s
0.035 / 2
▁are▁a
0.161 / 2
▁type▁of
0.249
▁ne
0.274
ural
0.466 / 2
▁network▁architecture
1.37 / 5
▁that▁have▁been▁gaining▁popularity
1.026
.
1.229 / 2
▁Transformer
0.884
s
0.694 / 4
▁were▁developed▁to▁solve
-0.251 / 4
▁the▁problem▁of▁sequence
0.214 / 3
▁transduction
0.142
,
-0.074
▁or
0.055
▁ne
0.044
ural
0.033 / 2
▁machine▁translation
0.159
.
0.225 / 5
That▁means▁any▁task▁that
0.184 / 4
▁transforms▁an▁input
0.28 / 5
▁sequence▁to▁an▁output▁sequence
-0.072
.
-0.473 / 4
▁This▁includes▁speech▁recognition
0.025
,
0.09 / 9
▁text-to-speech▁transformation,
-0.099 / 2
▁etc.
0.049
.
-0.019
-2-4-602-5.83721-5.83721base value1.709531.70953f(inputs)1.37 ▁that▁have▁been▁gaining▁popularity 1.229 ▁Transformer 1.026 . 0.884 s 0.694 ▁were▁developed▁to▁solve 0.466 ▁network▁architecture 0.293 s 0.28 ▁sequence▁to▁an▁output▁sequence 0.274 ural 0.249 ▁ne 0.225 That▁means▁any▁task▁that 0.214 ▁transduction 0.185 ▁Trans 0.184 ▁transforms▁an▁input 0.17 former 0.161 ▁type▁of 0.159 . 0.142 , 0.09 ▁text-to-speech▁transformation, 0.055 ▁ne 0.049 . 0.044 ural 0.035 ▁are▁a 0.033 ▁machine▁translation 0.025 , -0.473 ▁This▁includes▁speech▁recognition -0.251 ▁the▁problem▁of▁sequence -0.099 ▁etc. -0.074 ▁or -0.072 . -0.019
inputs
0.185
▁Trans
0.17
former
0.293
s
0.035 / 2
▁are▁a
0.161 / 2
▁type▁of
0.249
▁ne
0.274
ural
0.466 / 2
▁network▁architecture
1.37 / 5
▁that▁have▁been▁gaining▁popularity
1.026
.
1.229 / 2
▁Transformer
0.884
s
0.694 / 4
▁were▁developed▁to▁solve
-0.251 / 4
▁the▁problem▁of▁sequence
0.214 / 3
▁transduction
0.142
,
-0.074
▁or
0.055
▁ne
0.044
ural
0.033 / 2
▁machine▁translation
0.159
.
0.225 / 5
That▁means▁any▁task▁that
0.184 / 4
▁transforms▁an▁input
0.28 / 5
▁sequence▁to▁an▁output▁sequence
-0.072
.
-0.473 / 4
▁This▁includes▁speech▁recognition
0.025
,
0.09 / 9
▁text-to-speech▁transformation,
-0.099 / 2
▁etc.
0.049
.
-0.019
-2-6-10-142610-7.34699-7.34699base value4.261164.26116fТранс(inputs)6.375 ▁Transformer 4.194 s 2.087 ▁Trans 1.239 ▁machine▁translation 0.881 ▁transduction 0.82 , 0.77 ▁text-to-speech▁transformation, 0.661 ▁This▁includes▁speech▁recognition 0.64 former 0.349 ▁transforms▁an▁input 0.287 ▁etc. 0.219 s 0.134 ▁sequence▁to▁an▁output▁sequence 0.013 ural 0.013 ▁ne 0.011 That▁means▁any▁task▁that 0.003 ural -1.795 ▁that▁have▁been▁gaining▁popularity -1.067 ▁the▁problem▁of▁sequence -0.985 . -0.825 ▁or -0.724 . -0.399 ▁network▁architecture -0.339 . -0.304 ▁are▁a -0.181 ▁type▁of -0.145 . -0.116 ▁were▁developed▁to▁solve -0.095 -0.075 , -0.038 ▁ne
inputs
2.087
▁Trans
0.64
former
0.219
s
-0.304 / 2
▁are▁a
-0.181 / 2
▁type▁of
-0.038
▁ne
0.003
ural
-0.399 / 2
▁network▁architecture
-1.795 / 5
▁that▁have▁been▁gaining▁popularity
-0.985
.
6.375 / 2
▁Transformer
4.194
s
-0.116 / 4
▁were▁developed▁to▁solve
-1.067 / 4
▁the▁problem▁of▁sequence
0.881 / 3
▁transduction
0.82
,
-0.825
▁or
0.013
▁ne
0.013
ural
1.239 / 2
▁machine▁translation
-0.145
.
0.011 / 5
That▁means▁any▁task▁that
0.349 / 4
▁transforms▁an▁input
0.134 / 5
▁sequence▁to▁an▁output▁sequence
-0.339
.
0.661 / 4
▁This▁includes▁speech▁recognition
-0.075
,
0.77 / 9
▁text-to-speech▁transformation,
0.287 / 2
▁etc.
-0.724
.
-0.095
-2-6-10-142610-7.34699-7.34699base value4.261164.26116fТранс(inputs)6.375 ▁Transformer 4.194 s 2.087 ▁Trans 1.239 ▁machine▁translation 0.881 ▁transduction 0.82 , 0.77 ▁text-to-speech▁transformation, 0.661 ▁This▁includes▁speech▁recognition 0.64 former 0.349 ▁transforms▁an▁input 0.287 ▁etc. 0.219 s 0.134 ▁sequence▁to▁an▁output▁sequence 0.013 ural 0.013 ▁ne 0.011 That▁means▁any▁task▁that 0.003 ural -1.795 ▁that▁have▁been▁gaining▁popularity -1.067 ▁the▁problem▁of▁sequence -0.985 . -0.825 ▁or -0.724 . -0.399 ▁network▁architecture -0.339 . -0.304 ▁are▁a -0.181 ▁type▁of -0.145 . -0.116 ▁were▁developed▁to▁solve -0.095 -0.075 , -0.038 ▁ne
inputs
2.087
▁Trans
0.64
former
0.219
s
-0.304 / 2
▁are▁a
-0.181 / 2
▁type▁of
-0.038
▁ne
0.003
ural
-0.399 / 2
▁network▁architecture
-1.795 / 5
▁that▁have▁been▁gaining▁popularity
-0.985
.
6.375 / 2
▁Transformer
4.194
s
-0.116 / 4
▁were▁developed▁to▁solve
-1.067 / 4
▁the▁problem▁of▁sequence
0.881 / 3
▁transduction
0.82
,
-0.825
▁or
0.013
▁ne
0.013
ural
1.239 / 2
▁machine▁translation
-0.145
.
0.011 / 5
That▁means▁any▁task▁that
0.349 / 4
▁transforms▁an▁input
0.134 / 5
▁sequence▁to▁an▁output▁sequence
-0.339
.
0.661 / 4
▁This▁includes▁speech▁recognition
-0.075
,
0.77 / 9
▁text-to-speech▁transformation,
0.287 / 2
▁etc.
-0.724
.
-0.095
-2-6-10-142610-1.79468-1.79468base value3.217223.21722fформ(inputs)2.009 former 1.385 ▁the▁problem▁of▁sequence 1.292 ▁text-to-speech▁transformation, 0.973 ▁transforms▁an▁input 0.95 ▁Transformer 0.669 s 0.172 ▁etc. 0.154 s 0.138 . 0.1 ▁sequence▁to▁an▁output▁sequence 0.095 ▁were▁developed▁to▁solve 0.086 ural 0.086 ▁ne 0.06 ▁ne 0.049 ural 0.027 That▁means▁any▁task▁that 0.02 ▁or 0.012 -0.941 ▁transduction -0.915 , -0.475 ▁Trans -0.252 ▁This▁includes▁speech▁recognition -0.133 . -0.129 ▁that▁have▁been▁gaining▁popularity -0.122 ▁machine▁translation -0.074 ▁network▁architecture -0.061 . -0.058 ▁are▁a -0.05 ▁type▁of -0.034 , -0.021 .
inputs
-0.475
▁Trans
2.009
former
0.154
s
-0.058 / 2
▁are▁a
-0.05 / 2
▁type▁of
0.06
▁ne
0.049
ural
-0.074 / 2
▁network▁architecture
-0.129 / 5
▁that▁have▁been▁gaining▁popularity
-0.133
.
0.95 / 2
▁Transformer
0.669
s
0.095 / 4
▁were▁developed▁to▁solve
1.385 / 4
▁the▁problem▁of▁sequence
-0.941 / 3
▁transduction
-0.915
,
0.02
▁or
0.086
▁ne
0.086
ural
-0.122 / 2
▁machine▁translation
-0.061
.
0.027 / 5
That▁means▁any▁task▁that
0.973 / 4
▁transforms▁an▁input
0.1 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
-0.252 / 4
▁This▁includes▁speech▁recognition
-0.034
,
1.292 / 9
▁text-to-speech▁transformation,
0.172 / 2
▁etc.
0.138
.
0.012
1-1-3-535-1.79468-1.79468base value3.217223.21722fформ(inputs)2.009 former 1.385 ▁the▁problem▁of▁sequence 1.292 ▁text-to-speech▁transformation, 0.973 ▁transforms▁an▁input 0.95 ▁Transformer 0.669 s 0.172 ▁etc. 0.154 s 0.138 . 0.1 ▁sequence▁to▁an▁output▁sequence 0.095 ▁were▁developed▁to▁solve 0.086 ural 0.086 ▁ne 0.06 ▁ne 0.049 ural 0.027 That▁means▁any▁task▁that 0.02 ▁or 0.012 -0.941 ▁transduction -0.915 , -0.475 ▁Trans -0.252 ▁This▁includes▁speech▁recognition -0.133 . -0.129 ▁that▁have▁been▁gaining▁popularity -0.122 ▁machine▁translation -0.074 ▁network▁architecture -0.061 . -0.058 ▁are▁a -0.05 ▁type▁of -0.034 , -0.021 .
inputs
-0.475
▁Trans
2.009
former
0.154
s
-0.058 / 2
▁are▁a
-0.05 / 2
▁type▁of
0.06
▁ne
0.049
ural
-0.074 / 2
▁network▁architecture
-0.129 / 5
▁that▁have▁been▁gaining▁popularity
-0.133
.
0.95 / 2
▁Transformer
0.669
s
0.095 / 4
▁were▁developed▁to▁solve
1.385 / 4
▁the▁problem▁of▁sequence
-0.941 / 3
▁transduction
-0.915
,
0.02
▁or
0.086
▁ne
0.086
ural
-0.122 / 2
▁machine▁translation
-0.061
.
0.027 / 5
That▁means▁any▁task▁that
0.973 / 4
▁transforms▁an▁input
0.1 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
-0.252 / 4
▁This▁includes▁speech▁recognition
-0.034
,
1.292 / 9
▁text-to-speech▁transformation,
0.172 / 2
▁etc.
0.138
.
0.012
-2-6-10-142610-5.25227-5.25227base value-0.0838411-0.0838411fаторы(inputs)1.436 s 1.062 ▁Transformer 1.043 s 0.856 ▁Trans 0.824 former 0.45 ▁the▁problem▁of▁sequence 0.419 ▁machine▁translation 0.154 ▁were▁developed▁to▁solve 0.146 . 0.134 . 0.13 . 0.111 ▁This▁includes▁speech▁recognition 0.062 ▁type▁of 0.056 . 0.04 ▁or 0.026 , -0.462 ▁text-to-speech▁transformation, -0.26 ▁that▁have▁been▁gaining▁popularity -0.257 ▁transforms▁an▁input -0.182 , -0.134 ▁transduction -0.098 ▁network▁architecture -0.086 ▁sequence▁to▁an▁output▁sequence -0.068 ▁ne -0.058 ▁are▁a -0.052 ural -0.052 ▁etc. -0.024 That▁means▁any▁task▁that -0.017 ▁ne -0.016 -0.015 ural
inputs
0.856
▁Trans
0.824
former
1.043
s
-0.058 / 2
▁are▁a
0.062 / 2
▁type▁of
-0.068
▁ne
-0.052
ural
-0.098 / 2
▁network▁architecture
-0.26 / 5
▁that▁have▁been▁gaining▁popularity
0.13
.
1.062 / 2
▁Transformer
1.436
s
0.154 / 4
▁were▁developed▁to▁solve
0.45 / 4
▁the▁problem▁of▁sequence
-0.134 / 3
▁transduction
-0.182
,
0.04
▁or
-0.017
▁ne
-0.015
ural
0.419 / 2
▁machine▁translation
0.134
.
-0.024 / 5
That▁means▁any▁task▁that
-0.257 / 4
▁transforms▁an▁input
-0.086 / 5
▁sequence▁to▁an▁output▁sequence
0.056
.
0.111 / 4
▁This▁includes▁speech▁recognition
0.026
,
-0.462 / 9
▁text-to-speech▁transformation,
-0.052 / 2
▁etc.
0.146
.
-0.016
-3-4-5-6-7-2-101-5.25227-5.25227base value-0.0838411-0.0838411fаторы(inputs)1.436 s 1.062 ▁Transformer 1.043 s 0.856 ▁Trans 0.824 former 0.45 ▁the▁problem▁of▁sequence 0.419 ▁machine▁translation 0.154 ▁were▁developed▁to▁solve 0.146 . 0.134 . 0.13 . 0.111 ▁This▁includes▁speech▁recognition 0.062 ▁type▁of 0.056 . 0.04 ▁or 0.026 , -0.462 ▁text-to-speech▁transformation, -0.26 ▁that▁have▁been▁gaining▁popularity -0.257 ▁transforms▁an▁input -0.182 , -0.134 ▁transduction -0.098 ▁network▁architecture -0.086 ▁sequence▁to▁an▁output▁sequence -0.068 ▁ne -0.058 ▁are▁a -0.052 ural -0.052 ▁etc. -0.024 That▁means▁any▁task▁that -0.017 ▁ne -0.016 -0.015 ural
inputs
0.856
▁Trans
0.824
former
1.043
s
-0.058 / 2
▁are▁a
0.062 / 2
▁type▁of
-0.068
▁ne
-0.052
ural
-0.098 / 2
▁network▁architecture
-0.26 / 5
▁that▁have▁been▁gaining▁popularity
0.13
.
1.062 / 2
▁Transformer
1.436
s
0.154 / 4
▁were▁developed▁to▁solve
0.45 / 4
▁the▁problem▁of▁sequence
-0.134 / 3
▁transduction
-0.182
,
0.04
▁or
-0.017
▁ne
-0.015
ural
0.419 / 2
▁machine▁translation
0.134
.
-0.024 / 5
That▁means▁any▁task▁that
-0.257 / 4
▁transforms▁an▁input
-0.086 / 5
▁sequence▁to▁an▁output▁sequence
0.056
.
0.111 / 4
▁This▁includes▁speech▁recognition
0.026
,
-0.462 / 9
▁text-to-speech▁transformation,
-0.052 / 2
▁etc.
0.146
.
-0.016
-2-6-10-142610-5.58238-5.58238base value0.7806370.780637fбыли(inputs)7.072 ▁were▁developed▁to▁solve 0.386 ▁that▁have▁been▁gaining▁popularity 0.325 ▁the▁problem▁of▁sequence 0.264 ▁are▁a 0.228 That▁means▁any▁task▁that 0.182 ▁text-to-speech▁transformation, 0.106 ▁network▁architecture 0.093 . 0.046 s 0.044 s 0.032 ▁machine▁translation 0.026 ▁sequence▁to▁an▁output▁sequence 0.013 ural 0.0 . -0.698 ▁Trans -0.41 former -0.269 ▁transforms▁an▁input -0.26 ▁This▁includes▁speech▁recognition -0.174 . -0.173 ▁Transformer -0.123 ▁etc. -0.075 ▁or -0.072 ▁transduction -0.064 , -0.046 . -0.034 ▁type▁of -0.02 ural -0.018 ▁ne -0.012 ▁ne -0.004 -0.002 ,
inputs
-0.698
▁Trans
-0.41
former
0.046
s
0.264 / 2
▁are▁a
-0.034 / 2
▁type▁of
-0.012
▁ne
0.013
ural
0.106 / 2
▁network▁architecture
0.386 / 5
▁that▁have▁been▁gaining▁popularity
0.093
.
-0.173 / 2
▁Transformer
0.044
s
7.072 / 4
▁were▁developed▁to▁solve
0.325 / 4
▁the▁problem▁of▁sequence
-0.072 / 3
▁transduction
-0.064
,
-0.075
▁or
-0.018
▁ne
-0.02
ural
0.032 / 2
▁machine▁translation
0.0
.
0.228 / 5
That▁means▁any▁task▁that
-0.269 / 4
▁transforms▁an▁input
0.026 / 5
▁sequence▁to▁an▁output▁sequence
-0.046
.
-0.26 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.182 / 9
▁text-to-speech▁transformation,
-0.123 / 2
▁etc.
-0.174
.
-0.004
-2-4-6-802-5.58238-5.58238base value0.7806370.780637fбыли(inputs)7.072 ▁were▁developed▁to▁solve 0.386 ▁that▁have▁been▁gaining▁popularity 0.325 ▁the▁problem▁of▁sequence 0.264 ▁are▁a 0.228 That▁means▁any▁task▁that 0.182 ▁text-to-speech▁transformation, 0.106 ▁network▁architecture 0.093 . 0.046 s 0.044 s 0.032 ▁machine▁translation 0.026 ▁sequence▁to▁an▁output▁sequence 0.013 ural 0.0 . -0.698 ▁Trans -0.41 former -0.269 ▁transforms▁an▁input -0.26 ▁This▁includes▁speech▁recognition -0.174 . -0.173 ▁Transformer -0.123 ▁etc. -0.075 ▁or -0.072 ▁transduction -0.064 , -0.046 . -0.034 ▁type▁of -0.02 ural -0.018 ▁ne -0.012 ▁ne -0.004 -0.002 ,
inputs
-0.698
▁Trans
-0.41
former
0.046
s
0.264 / 2
▁are▁a
-0.034 / 2
▁type▁of
-0.012
▁ne
0.013
ural
0.106 / 2
▁network▁architecture
0.386 / 5
▁that▁have▁been▁gaining▁popularity
0.093
.
-0.173 / 2
▁Transformer
0.044
s
7.072 / 4
▁were▁developed▁to▁solve
0.325 / 4
▁the▁problem▁of▁sequence
-0.072 / 3
▁transduction
-0.064
,
-0.075
▁or
-0.018
▁ne
-0.02
ural
0.032 / 2
▁machine▁translation
0.0
.
0.228 / 5
That▁means▁any▁task▁that
-0.269 / 4
▁transforms▁an▁input
0.026 / 5
▁sequence▁to▁an▁output▁sequence
-0.046
.
-0.26 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.182 / 9
▁text-to-speech▁transformation,
-0.123 / 2
▁etc.
-0.174
.
-0.004
-2-6-10-142610-6.24996-6.24996base value0.4979030.497903fразработаны(inputs)7.477 ▁were▁developed▁to▁solve 0.284 ▁the▁problem▁of▁sequence 0.274 ▁network▁architecture 0.23 . 0.193 ▁etc. 0.187 ▁type▁of 0.081 ▁text-to-speech▁transformation, 0.055 . 0.05 . 0.048 . 0.046 , 0.03 ▁This▁includes▁speech▁recognition 0.027 ▁or 0.023 ▁are▁a -0.353 ▁that▁have▁been▁gaining▁popularity -0.236 former -0.19 ▁Trans -0.173 ▁Transformer -0.168 s -0.145 ▁transduction -0.133 , -0.131 ▁transforms▁an▁input -0.12 ural -0.12 s -0.118 ▁ne -0.116 That▁means▁any▁task▁that -0.077 ▁sequence▁to▁an▁output▁sequence -0.07 ural -0.068 ▁ne -0.034 ▁machine▁translation -0.007
inputs
-0.19
▁Trans
-0.236
former
-0.12
s
0.023 / 2
▁are▁a
0.187 / 2
▁type▁of
-0.068
▁ne
-0.07
ural
0.274 / 2
▁network▁architecture
-0.353 / 5
▁that▁have▁been▁gaining▁popularity
0.048
.
-0.173 / 2
▁Transformer
-0.168
s
7.477 / 4
▁were▁developed▁to▁solve
0.284 / 4
▁the▁problem▁of▁sequence
-0.145 / 3
▁transduction
-0.133
,
0.027
▁or
-0.118
▁ne
-0.12
ural
-0.034 / 2
▁machine▁translation
0.05
.
-0.116 / 5
That▁means▁any▁task▁that
-0.131 / 4
▁transforms▁an▁input
-0.077 / 5
▁sequence▁to▁an▁output▁sequence
0.055
.
0.03 / 4
▁This▁includes▁speech▁recognition
0.046
,
0.081 / 9
▁text-to-speech▁transformation,
0.193 / 2
▁etc.
0.23
.
-0.007
-3-5-7-11-6.24996-6.24996base value0.4979030.497903fразработаны(inputs)7.477 ▁were▁developed▁to▁solve 0.284 ▁the▁problem▁of▁sequence 0.274 ▁network▁architecture 0.23 . 0.193 ▁etc. 0.187 ▁type▁of 0.081 ▁text-to-speech▁transformation, 0.055 . 0.05 . 0.048 . 0.046 , 0.03 ▁This▁includes▁speech▁recognition 0.027 ▁or 0.023 ▁are▁a -0.353 ▁that▁have▁been▁gaining▁popularity -0.236 former -0.19 ▁Trans -0.173 ▁Transformer -0.168 s -0.145 ▁transduction -0.133 , -0.131 ▁transforms▁an▁input -0.12 ural -0.12 s -0.118 ▁ne -0.116 That▁means▁any▁task▁that -0.077 ▁sequence▁to▁an▁output▁sequence -0.07 ural -0.068 ▁ne -0.034 ▁machine▁translation -0.007
inputs
-0.19
▁Trans
-0.236
former
-0.12
s
0.023 / 2
▁are▁a
0.187 / 2
▁type▁of
-0.068
▁ne
-0.07
ural
0.274 / 2
▁network▁architecture
-0.353 / 5
▁that▁have▁been▁gaining▁popularity
0.048
.
-0.173 / 2
▁Transformer
-0.168
s
7.477 / 4
▁were▁developed▁to▁solve
0.284 / 4
▁the▁problem▁of▁sequence
-0.145 / 3
▁transduction
-0.133
,
0.027
▁or
-0.118
▁ne
-0.12
ural
-0.034 / 2
▁machine▁translation
0.05
.
-0.116 / 5
That▁means▁any▁task▁that
-0.131 / 4
▁transforms▁an▁input
-0.077 / 5
▁sequence▁to▁an▁output▁sequence
0.055
.
0.03 / 4
▁This▁includes▁speech▁recognition
0.046
,
0.081 / 9
▁text-to-speech▁transformation,
0.193 / 2
▁etc.
0.23
.
-0.007
-2-6-10-142610-2.04206-2.04206base value0.967660.96766fдля(inputs)2.213 ▁were▁developed▁to▁solve 0.181 ▁machine▁translation 0.161 ▁the▁problem▁of▁sequence 0.117 s 0.111 ▁Transformer 0.095 ▁This▁includes▁speech▁recognition 0.082 ▁transforms▁an▁input 0.069 ▁sequence▁to▁an▁output▁sequence 0.047 ▁text-to-speech▁transformation, 0.04 ▁etc. 0.035 . 0.026 ▁transduction 0.025 . 0.022 That▁means▁any▁task▁that 0.019 , 0.007 . 0.005 . 0.002 former 0.001 ural -0.09 ▁that▁have▁been▁gaining▁popularity -0.035 ▁or -0.029 ▁are▁a -0.024 ▁Trans -0.019 s -0.015 -0.013 ural -0.012 ▁ne -0.006 ▁network▁architecture -0.002 , -0.002 ▁type▁of -0.001 ▁ne
inputs
-0.024
▁Trans
0.002
former
-0.019
s
-0.029 / 2
▁are▁a
-0.002 / 2
▁type▁of
-0.001
▁ne
0.001
ural
-0.006 / 2
▁network▁architecture
-0.09 / 5
▁that▁have▁been▁gaining▁popularity
0.007
.
0.111 / 2
▁Transformer
0.117
s
2.213 / 4
▁were▁developed▁to▁solve
0.161 / 4
▁the▁problem▁of▁sequence
0.026 / 3
▁transduction
0.019
,
-0.035
▁or
-0.012
▁ne
-0.013
ural
0.181 / 2
▁machine▁translation
0.035
.
0.022 / 5
That▁means▁any▁task▁that
0.082 / 4
▁transforms▁an▁input
0.069 / 5
▁sequence▁to▁an▁output▁sequence
0.025
.
0.095 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.047 / 9
▁text-to-speech▁transformation,
0.04 / 2
▁etc.
0.005
.
-0.015
-1-201-2.04206-2.04206base value0.967660.96766fдля(inputs)2.213 ▁were▁developed▁to▁solve 0.181 ▁machine▁translation 0.161 ▁the▁problem▁of▁sequence 0.117 s 0.111 ▁Transformer 0.095 ▁This▁includes▁speech▁recognition 0.082 ▁transforms▁an▁input 0.069 ▁sequence▁to▁an▁output▁sequence 0.047 ▁text-to-speech▁transformation, 0.04 ▁etc. 0.035 . 0.026 ▁transduction 0.025 . 0.022 That▁means▁any▁task▁that 0.019 , 0.007 . 0.005 . 0.002 former 0.001 ural -0.09 ▁that▁have▁been▁gaining▁popularity -0.035 ▁or -0.029 ▁are▁a -0.024 ▁Trans -0.019 s -0.015 -0.013 ural -0.012 ▁ne -0.006 ▁network▁architecture -0.002 , -0.002 ▁type▁of -0.001 ▁ne
inputs
-0.024
▁Trans
0.002
former
-0.019
s
-0.029 / 2
▁are▁a
-0.002 / 2
▁type▁of
-0.001
▁ne
0.001
ural
-0.006 / 2
▁network▁architecture
-0.09 / 5
▁that▁have▁been▁gaining▁popularity
0.007
.
0.111 / 2
▁Transformer
0.117
s
2.213 / 4
▁were▁developed▁to▁solve
0.161 / 4
▁the▁problem▁of▁sequence
0.026 / 3
▁transduction
0.019
,
-0.035
▁or
-0.012
▁ne
-0.013
ural
0.181 / 2
▁machine▁translation
0.035
.
0.022 / 5
That▁means▁any▁task▁that
0.082 / 4
▁transforms▁an▁input
0.069 / 5
▁sequence▁to▁an▁output▁sequence
0.025
.
0.095 / 4
▁This▁includes▁speech▁recognition
-0.002
,
0.047 / 9
▁text-to-speech▁transformation,
0.04 / 2
▁etc.
0.005
.
-0.015
-2-6-10-142610-5.72156-5.72156base value1.831891.83189fрешения(inputs)5.608 ▁were▁developed▁to▁solve 2.392 ▁the▁problem▁of▁sequence 0.221 That▁means▁any▁task▁that 0.136 . 0.081 ▁etc. 0.074 . 0.065 , 0.053 s 0.048 ▁type▁of 0.043 ▁Transformer 0.032 . 0.022 ural 0.021 . 0.019 ▁ne 0.013 ▁text-to-speech▁transformation, 0.005 ▁that▁have▁been▁gaining▁popularity 0.003 ▁This▁includes▁speech▁recognition -0.387 ▁sequence▁to▁an▁output▁sequence -0.236 ▁machine▁translation -0.119 former -0.1 , -0.097 ▁transduction -0.086 ▁network▁architecture -0.068 ▁Trans -0.063 ural -0.062 ▁ne -0.025 s -0.016 ▁are▁a -0.01 ▁transforms▁an▁input -0.009 ▁or -0.003
inputs
-0.068
▁Trans
-0.119
former
-0.025
s
-0.016 / 2
▁are▁a
0.048 / 2
▁type▁of
0.019
▁ne
0.022
ural
-0.086 / 2
▁network▁architecture
0.005 / 5
▁that▁have▁been▁gaining▁popularity
0.074
.
0.043 / 2
▁Transformer
0.053
s
5.608 / 4
▁were▁developed▁to▁solve
2.392 / 4
▁the▁problem▁of▁sequence
-0.097 / 3
▁transduction
-0.1
,
-0.009
▁or
-0.062
▁ne
-0.063
ural
-0.236 / 2
▁machine▁translation
0.021
.
0.221 / 5
That▁means▁any▁task▁that
-0.01 / 4
▁transforms▁an▁input
-0.387 / 5
▁sequence▁to▁an▁output▁sequence
0.032
.
0.003 / 4
▁This▁includes▁speech▁recognition
0.065
,
0.013 / 9
▁text-to-speech▁transformation,
0.081 / 2
▁etc.
0.136
.
-0.003
-2-4-602-5.72156-5.72156base value1.831891.83189fрешения(inputs)5.608 ▁were▁developed▁to▁solve 2.392 ▁the▁problem▁of▁sequence 0.221 That▁means▁any▁task▁that 0.136 . 0.081 ▁etc. 0.074 . 0.065 , 0.053 s 0.048 ▁type▁of 0.043 ▁Transformer 0.032 . 0.022 ural 0.021 . 0.019 ▁ne 0.013 ▁text-to-speech▁transformation, 0.005 ▁that▁have▁been▁gaining▁popularity 0.003 ▁This▁includes▁speech▁recognition -0.387 ▁sequence▁to▁an▁output▁sequence -0.236 ▁machine▁translation -0.119 former -0.1 , -0.097 ▁transduction -0.086 ▁network▁architecture -0.068 ▁Trans -0.063 ural -0.062 ▁ne -0.025 s -0.016 ▁are▁a -0.01 ▁transforms▁an▁input -0.009 ▁or -0.003
inputs
-0.068
▁Trans
-0.119
former
-0.025
s
-0.016 / 2
▁are▁a
0.048 / 2
▁type▁of
0.019
▁ne
0.022
ural
-0.086 / 2
▁network▁architecture
0.005 / 5
▁that▁have▁been▁gaining▁popularity
0.074
.
0.043 / 2
▁Transformer
0.053
s
5.608 / 4
▁were▁developed▁to▁solve
2.392 / 4
▁the▁problem▁of▁sequence
-0.097 / 3
▁transduction
-0.1
,
-0.009
▁or
-0.062
▁ne
-0.063
ural
-0.236 / 2
▁machine▁translation
0.021
.
0.221 / 5
That▁means▁any▁task▁that
-0.01 / 4
▁transforms▁an▁input
-0.387 / 5
▁sequence▁to▁an▁output▁sequence
0.032
.
0.003 / 4
▁This▁includes▁speech▁recognition
0.065
,
0.013 / 9
▁text-to-speech▁transformation,
0.081 / 2
▁etc.
0.136
.
-0.003
-2-6-10-142610-2.86657-2.86657base value1.024491.02449fпроблемы(inputs)3.66 ▁the▁problem▁of▁sequence 0.874 ▁were▁developed▁to▁solve 0.368 ▁transduction 0.112 ▁transforms▁an▁input 0.111 , 0.085 s 0.076 ural 0.076 ▁ne 0.071 ▁This▁includes▁speech▁recognition 0.06 ▁Transformer 0.02 ▁ne 0.017 s 0.013 ural 0.009 ▁etc. 0.005 ▁text-to-speech▁transformation, 0.004 ▁that▁have▁been▁gaining▁popularity -0.862 That▁means▁any▁task▁that -0.165 ▁sequence▁to▁an▁output▁sequence -0.113 ▁Trans -0.104 . -0.077 ▁machine▁translation -0.071 former -0.066 ▁network▁architecture -0.065 , -0.042 . -0.026 -0.023 . -0.019 ▁type▁of -0.017 . -0.012 ▁or -0.008 ▁are▁a
inputs
-0.113
▁Trans
-0.071
former
0.017
s
-0.008 / 2
▁are▁a
-0.019 / 2
▁type▁of
0.02
▁ne
0.013
ural
-0.066 / 2
▁network▁architecture
0.004 / 5
▁that▁have▁been▁gaining▁popularity
-0.042
.
0.06 / 2
▁Transformer
0.085
s
0.874 / 4
▁were▁developed▁to▁solve
3.66 / 4
▁the▁problem▁of▁sequence
0.368 / 3
▁transduction
0.111
,
-0.012
▁or
0.076
▁ne
0.076
ural
-0.077 / 2
▁machine▁translation
-0.017
.
-0.862 / 5
That▁means▁any▁task▁that
0.112 / 4
▁transforms▁an▁input
-0.165 / 5
▁sequence▁to▁an▁output▁sequence
-0.023
.
0.071 / 4
▁This▁includes▁speech▁recognition
-0.065
,
0.005 / 9
▁text-to-speech▁transformation,
0.009 / 2
▁etc.
-0.104
.
-0.026
-1-2-3-4012-2.86657-2.86657base value1.024491.02449fпроблемы(inputs)3.66 ▁the▁problem▁of▁sequence 0.874 ▁were▁developed▁to▁solve 0.368 ▁transduction 0.112 ▁transforms▁an▁input 0.111 , 0.085 s 0.076 ural 0.076 ▁ne 0.071 ▁This▁includes▁speech▁recognition 0.06 ▁Transformer 0.02 ▁ne 0.017 s 0.013 ural 0.009 ▁etc. 0.005 ▁text-to-speech▁transformation, 0.004 ▁that▁have▁been▁gaining▁popularity -0.862 That▁means▁any▁task▁that -0.165 ▁sequence▁to▁an▁output▁sequence -0.113 ▁Trans -0.104 . -0.077 ▁machine▁translation -0.071 former -0.066 ▁network▁architecture -0.065 , -0.042 . -0.026 -0.023 . -0.019 ▁type▁of -0.017 . -0.012 ▁or -0.008 ▁are▁a
inputs
-0.113
▁Trans
-0.071
former
0.017
s
-0.008 / 2
▁are▁a
-0.019 / 2
▁type▁of
0.02
▁ne
0.013
ural
-0.066 / 2
▁network▁architecture
0.004 / 5
▁that▁have▁been▁gaining▁popularity
-0.042
.
0.06 / 2
▁Transformer
0.085
s
0.874 / 4
▁were▁developed▁to▁solve
3.66 / 4
▁the▁problem▁of▁sequence
0.368 / 3
▁transduction
0.111
,
-0.012
▁or
0.076
▁ne
0.076
ural
-0.077 / 2
▁machine▁translation
-0.017
.
-0.862 / 5
That▁means▁any▁task▁that
0.112 / 4
▁transforms▁an▁input
-0.165 / 5
▁sequence▁to▁an▁output▁sequence
-0.023
.
0.071 / 4
▁This▁includes▁speech▁recognition
-0.065
,
0.005 / 9
▁text-to-speech▁transformation,
0.009 / 2
▁etc.
-0.104
.
-0.026
-2-6-10-142610-7.62325-7.62325base value-0.291665-0.291665fтранс(inputs)3.46 ▁transduction 1.379 , 0.674 ▁text-to-speech▁transformation, 0.643 ▁machine▁translation 0.485 ▁Trans 0.415 ▁the▁problem▁of▁sequence 0.393 ▁network▁architecture 0.327 ▁Transformer 0.258 ▁This▁includes▁speech▁recognition 0.227 former 0.194 ural 0.186 ▁ne 0.175 ▁etc. 0.164 s 0.074 ▁or 0.026 . 0.023 0.01 ▁that▁have▁been▁gaining▁popularity -0.868 ▁were▁developed▁to▁solve -0.155 ▁are▁a -0.155 ▁sequence▁to▁an▁output▁sequence -0.141 , -0.096 ▁type▁of -0.075 s -0.067 That▁means▁any▁task▁that -0.053 . -0.05 . -0.045 . -0.027 ▁ne -0.027 ▁transforms▁an▁input -0.024 ural
inputs
0.485
▁Trans
0.227
former
-0.075
s
-0.155 / 2
▁are▁a
-0.096 / 2
▁type▁of
-0.027
▁ne
-0.024
ural
0.393 / 2
▁network▁architecture
0.01 / 5
▁that▁have▁been▁gaining▁popularity
0.026
.
0.327 / 2
▁Transformer
0.164
s
-0.868 / 4
▁were▁developed▁to▁solve
0.415 / 4
▁the▁problem▁of▁sequence
3.46 / 3
▁transduction
1.379
,
0.074
▁or
0.186
▁ne
0.194
ural
0.643 / 2
▁machine▁translation
-0.05
.
-0.067 / 5
That▁means▁any▁task▁that
-0.027 / 4
▁transforms▁an▁input
-0.155 / 5
▁sequence▁to▁an▁output▁sequence
-0.045
.
0.258 / 4
▁This▁includes▁speech▁recognition
-0.141
,
0.674 / 9
▁text-to-speech▁transformation,
0.175 / 2
▁etc.
-0.053
.
0.023
-4-6-8-20-7.62325-7.62325base value-0.291665-0.291665fтранс(inputs)3.46 ▁transduction 1.379 , 0.674 ▁text-to-speech▁transformation, 0.643 ▁machine▁translation 0.485 ▁Trans 0.415 ▁the▁problem▁of▁sequence 0.393 ▁network▁architecture 0.327 ▁Transformer 0.258 ▁This▁includes▁speech▁recognition 0.227 former 0.194 ural 0.186 ▁ne 0.175 ▁etc. 0.164 s 0.074 ▁or 0.026 . 0.023 0.01 ▁that▁have▁been▁gaining▁popularity -0.868 ▁were▁developed▁to▁solve -0.155 ▁are▁a -0.155 ▁sequence▁to▁an▁output▁sequence -0.141 , -0.096 ▁type▁of -0.075 s -0.067 That▁means▁any▁task▁that -0.053 . -0.05 . -0.045 . -0.027 ▁ne -0.027 ▁transforms▁an▁input -0.024 ural
inputs
0.485
▁Trans
0.227
former
-0.075
s
-0.155 / 2
▁are▁a
-0.096 / 2
▁type▁of
-0.027
▁ne
-0.024
ural
0.393 / 2
▁network▁architecture
0.01 / 5
▁that▁have▁been▁gaining▁popularity
0.026
.
0.327 / 2
▁Transformer
0.164
s
-0.868 / 4
▁were▁developed▁to▁solve
0.415 / 4
▁the▁problem▁of▁sequence
3.46 / 3
▁transduction
1.379
,
0.074
▁or
0.186
▁ne
0.194
ural
0.643 / 2
▁machine▁translation
-0.05
.
-0.067 / 5
That▁means▁any▁task▁that
-0.027 / 4
▁transforms▁an▁input
-0.155 / 5
▁sequence▁to▁an▁output▁sequence
-0.045
.
0.258 / 4
▁This▁includes▁speech▁recognition
-0.141
,
0.674 / 9
▁text-to-speech▁transformation,
0.175 / 2
▁etc.
-0.053
.
0.023
-2-6-10-142610-8.01891-8.01891base value2.675092.67509fду(inputs)8.332 ▁transduction 3.699 , 0.345 ▁were▁developed▁to▁solve 0.337 ▁the▁problem▁of▁sequence 0.3 ▁ne 0.298 ural 0.21 ▁that▁have▁been▁gaining▁popularity 0.108 ▁ne 0.106 ural 0.055 . 0.044 . 0.043 ▁are▁a 0.028 ▁or 0.025 , 0.013 ▁type▁of 0.011 . -0.798 ▁Transformer -0.503 s -0.438 ▁text-to-speech▁transformation, -0.371 ▁machine▁translation -0.216 former -0.195 ▁network▁architecture -0.141 That▁means▁any▁task▁that -0.131 ▁Trans -0.112 s -0.107 ▁sequence▁to▁an▁output▁sequence -0.099 ▁This▁includes▁speech▁recognition -0.077 ▁transforms▁an▁input -0.04 ▁etc. -0.022 -0.012 .
inputs
-0.131
▁Trans
-0.216
former
-0.112
s
0.043 / 2
▁are▁a
0.013 / 2
▁type▁of
0.3
▁ne
0.298
ural
-0.195 / 2
▁network▁architecture
0.21 / 5
▁that▁have▁been▁gaining▁popularity
0.055
.
-0.798 / 2
▁Transformer
-0.503
s
0.345 / 4
▁were▁developed▁to▁solve
0.337 / 4
▁the▁problem▁of▁sequence
8.332 / 3
▁transduction
3.699
,
0.028
▁or
0.108
▁ne
0.106
ural
-0.371 / 2
▁machine▁translation
-0.012
.
-0.141 / 5
That▁means▁any▁task▁that
-0.077 / 4
▁transforms▁an▁input
-0.107 / 5
▁sequence▁to▁an▁output▁sequence
0.011
.
-0.099 / 4
▁This▁includes▁speech▁recognition
0.025
,
-0.438 / 9
▁text-to-speech▁transformation,
-0.04 / 2
▁etc.
0.044
.
-0.022
-3-6-9036-8.01891-8.01891base value2.675092.67509fду(inputs)8.332 ▁transduction 3.699 , 0.345 ▁were▁developed▁to▁solve 0.337 ▁the▁problem▁of▁sequence 0.3 ▁ne 0.298 ural 0.21 ▁that▁have▁been▁gaining▁popularity 0.108 ▁ne 0.106 ural 0.055 . 0.044 . 0.043 ▁are▁a 0.028 ▁or 0.025 , 0.013 ▁type▁of 0.011 . -0.798 ▁Transformer -0.503 s -0.438 ▁text-to-speech▁transformation, -0.371 ▁machine▁translation -0.216 former -0.195 ▁network▁architecture -0.141 That▁means▁any▁task▁that -0.131 ▁Trans -0.112 s -0.107 ▁sequence▁to▁an▁output▁sequence -0.099 ▁This▁includes▁speech▁recognition -0.077 ▁transforms▁an▁input -0.04 ▁etc. -0.022 -0.012 .
inputs
-0.131
▁Trans
-0.216
former
-0.112
s
0.043 / 2
▁are▁a
0.013 / 2
▁type▁of
0.3
▁ne
0.298
ural
-0.195 / 2
▁network▁architecture
0.21 / 5
▁that▁have▁been▁gaining▁popularity
0.055
.
-0.798 / 2
▁Transformer
-0.503
s
0.345 / 4
▁were▁developed▁to▁solve
0.337 / 4
▁the▁problem▁of▁sequence
8.332 / 3
▁transduction
3.699
,
0.028
▁or
0.108
▁ne
0.106
ural
-0.371 / 2
▁machine▁translation
-0.012
.
-0.141 / 5
That▁means▁any▁task▁that
-0.077 / 4
▁transforms▁an▁input
-0.107 / 5
▁sequence▁to▁an▁output▁sequence
0.011
.
-0.099 / 4
▁This▁includes▁speech▁recognition
0.025
,
-0.438 / 9
▁text-to-speech▁transformation,
-0.04 / 2
▁etc.
0.044
.
-0.022
-2-6-10-142610-2.44992-2.44992base value1.075581.07558fкци(inputs)1.736 ▁transduction 0.654 , 0.445 ▁text-to-speech▁transformation, 0.439 ▁the▁problem▁of▁sequence 0.261 ▁were▁developed▁to▁solve 0.188 s 0.165 ural 0.161 ▁ne 0.156 ural 0.155 ▁etc. 0.146 ▁ne 0.134 ▁that▁have▁been▁gaining▁popularity 0.085 That▁means▁any▁task▁that 0.074 ▁network▁architecture 0.072 ▁machine▁translation 0.064 ▁transforms▁an▁input 0.053 . 0.047 ▁or 0.026 ▁type▁of 0.022 ▁are▁a 0.014 . 0.007 0.006 , 0.004 . -0.58 ▁Trans -0.455 ▁Transformer -0.337 former -0.175 s -0.022 ▁This▁includes▁speech▁recognition -0.01 . -0.007 ▁sequence▁to▁an▁output▁sequence
inputs
-0.58
▁Trans
-0.337
former
0.188
s
0.022 / 2
▁are▁a
0.026 / 2
▁type▁of
0.146
▁ne
0.156
ural
0.074 / 2
▁network▁architecture
0.134 / 5
▁that▁have▁been▁gaining▁popularity
0.014
.
-0.455 / 2
▁Transformer
-0.175
s
0.261 / 4
▁were▁developed▁to▁solve
0.439 / 4
▁the▁problem▁of▁sequence
1.736 / 3
▁transduction
0.654
,
0.047
▁or
0.161
▁ne
0.165
ural
0.072 / 2
▁machine▁translation
-0.01
.
0.085 / 5
That▁means▁any▁task▁that
0.064 / 4
▁transforms▁an▁input
-0.007 / 5
▁sequence▁to▁an▁output▁sequence
0.004
.
-0.022 / 4
▁This▁includes▁speech▁recognition
0.006
,
0.445 / 9
▁text-to-speech▁transformation,
0.155 / 2
▁etc.
0.053
.
0.007
-1-2-3-4012-2.44992-2.44992base value1.075581.07558fкци(inputs)1.736 ▁transduction 0.654 , 0.445 ▁text-to-speech▁transformation, 0.439 ▁the▁problem▁of▁sequence 0.261 ▁were▁developed▁to▁solve 0.188 s 0.165 ural 0.161 ▁ne 0.156 ural 0.155 ▁etc. 0.146 ▁ne 0.134 ▁that▁have▁been▁gaining▁popularity 0.085 That▁means▁any▁task▁that 0.074 ▁network▁architecture 0.072 ▁machine▁translation 0.064 ▁transforms▁an▁input 0.053 . 0.047 ▁or 0.026 ▁type▁of 0.022 ▁are▁a 0.014 . 0.007 0.006 , 0.004 . -0.58 ▁Trans -0.455 ▁Transformer -0.337 former -0.175 s -0.022 ▁This▁includes▁speech▁recognition -0.01 . -0.007 ▁sequence▁to▁an▁output▁sequence
inputs
-0.58
▁Trans
-0.337
former
0.188
s
0.022 / 2
▁are▁a
0.026 / 2
▁type▁of
0.146
▁ne
0.156
ural
0.074 / 2
▁network▁architecture
0.134 / 5
▁that▁have▁been▁gaining▁popularity
0.014
.
-0.455 / 2
▁Transformer
-0.175
s
0.261 / 4
▁were▁developed▁to▁solve
0.439 / 4
▁the▁problem▁of▁sequence
1.736 / 3
▁transduction
0.654
,
0.047
▁or
0.161
▁ne
0.165
ural
0.072 / 2
▁machine▁translation
-0.01
.
0.085 / 5
That▁means▁any▁task▁that
0.064 / 4
▁transforms▁an▁input
-0.007 / 5
▁sequence▁to▁an▁output▁sequence
0.004
.
-0.022 / 4
▁This▁includes▁speech▁recognition
0.006
,
0.445 / 9
▁text-to-speech▁transformation,
0.155 / 2
▁etc.
0.053
.
0.007
-2-6-10-1426101.436971.43697base value2.561652.56165fи(inputs)0.569 ▁transduction 0.279 , 0.188 ▁were▁developed▁to▁solve 0.168 ▁the▁problem▁of▁sequence 0.168 ▁that▁have▁been▁gaining▁popularity 0.126 ▁text-to-speech▁transformation, 0.121 ▁transforms▁an▁input 0.042 ▁etc. 0.037 ▁sequence▁to▁an▁output▁sequence 0.023 ural 0.022 . 0.022 ▁ne 0.015 ▁This▁includes▁speech▁recognition 0.014 former 0.013 ural 0.013 0.01 ▁ne 0.0 . -0.142 s -0.139 ▁machine▁translation -0.105 ▁Transformer -0.061 s -0.055 . -0.049 ▁or -0.039 . -0.038 That▁means▁any▁task▁that -0.036 ▁network▁architecture -0.021 ▁Trans -0.015 , -0.006 ▁type▁of -0.002 ▁are▁a
inputs
-0.021
▁Trans
0.014
former
-0.061
s
-0.002 / 2
▁are▁a
-0.006 / 2
▁type▁of
0.022
▁ne
0.023
ural
-0.036 / 2
▁network▁architecture
0.168 / 5
▁that▁have▁been▁gaining▁popularity
0.022
.
-0.105 / 2
▁Transformer
-0.142
s
0.188 / 4
▁were▁developed▁to▁solve
0.168 / 4
▁the▁problem▁of▁sequence
0.569 / 3
▁transduction
0.279
,
-0.049
▁or
0.01
▁ne
0.013
ural
-0.139 / 2
▁machine▁translation
-0.055
.
-0.038 / 5
That▁means▁any▁task▁that
0.121 / 4
▁transforms▁an▁input
0.037 / 5
▁sequence▁to▁an▁output▁sequence
-0.039
.
0.015 / 4
▁This▁includes▁speech▁recognition
-0.015
,
0.126 / 9
▁text-to-speech▁transformation,
0.042 / 2
▁etc.
0.0
.
0.013
21.61.20.82.42.83.21.436971.43697base value2.561652.56165fи(inputs)0.569 ▁transduction 0.279 , 0.188 ▁were▁developed▁to▁solve 0.168 ▁the▁problem▁of▁sequence 0.168 ▁that▁have▁been▁gaining▁popularity 0.126 ▁text-to-speech▁transformation, 0.121 ▁transforms▁an▁input 0.042 ▁etc. 0.037 ▁sequence▁to▁an▁output▁sequence 0.023 ural 0.022 . 0.022 ▁ne 0.015 ▁This▁includes▁speech▁recognition 0.014 former 0.013 ural 0.013 0.01 ▁ne 0.0 . -0.142 s -0.139 ▁machine▁translation -0.105 ▁Transformer -0.061 s -0.055 . -0.049 ▁or -0.039 . -0.038 That▁means▁any▁task▁that -0.036 ▁network▁architecture -0.021 ▁Trans -0.015 , -0.006 ▁type▁of -0.002 ▁are▁a
inputs
-0.021
▁Trans
0.014
former
-0.061
s
-0.002 / 2
▁are▁a
-0.006 / 2
▁type▁of
0.022
▁ne
0.023
ural
-0.036 / 2
▁network▁architecture
0.168 / 5
▁that▁have▁been▁gaining▁popularity
0.022
.
-0.105 / 2
▁Transformer
-0.142
s
0.188 / 4
▁were▁developed▁to▁solve
0.168 / 4
▁the▁problem▁of▁sequence
0.569 / 3
▁transduction
0.279
,
-0.049
▁or
0.01
▁ne
0.013
ural
-0.139 / 2
▁machine▁translation
-0.055
.
-0.038 / 5
That▁means▁any▁task▁that
0.121 / 4
▁transforms▁an▁input
0.037 / 5
▁sequence▁to▁an▁output▁sequence
-0.039
.
0.015 / 4
▁This▁includes▁speech▁recognition
-0.015
,
0.126 / 9
▁text-to-speech▁transformation,
0.042 / 2
▁etc.
0.0
.
0.013
-2-6-10-142610-4.0929-4.0929base value0.1178290.117829fпо(inputs)4.53 ▁the▁problem▁of▁sequence 0.55 ▁transduction 0.222 ▁that▁have▁been▁gaining▁popularity 0.137 , 0.079 ▁sequence▁to▁an▁output▁sequence 0.056 ▁etc. 0.046 . 0.035 . 0.03 ural 0.028 ▁ne 0.022 s 0.02 ▁type▁of 0.018 ▁network▁architecture 0.016 . 0.01 , -0.417 ▁were▁developed▁to▁solve -0.356 ▁This▁includes▁speech▁recognition -0.186 ▁machine▁translation -0.125 ▁Transformer -0.119 ▁Trans -0.087 s -0.065 ▁ne -0.063 ▁transforms▁an▁input -0.063 ural -0.038 . -0.035 That▁means▁any▁task▁that -0.017 ▁text-to-speech▁transformation, -0.011 -0.004 ▁are▁a -0.003 former -0.0 ▁or
inputs
-0.119
▁Trans
-0.003
former
0.022
s
-0.004 / 2
▁are▁a
0.02 / 2
▁type▁of
0.028
▁ne
0.03
ural
0.018 / 2
▁network▁architecture
0.222 / 5
▁that▁have▁been▁gaining▁popularity
0.046
.
-0.125 / 2
▁Transformer
-0.087
s
-0.417 / 4
▁were▁developed▁to▁solve
4.53 / 4
▁the▁problem▁of▁sequence
0.55 / 3
▁transduction
0.137
,
-0.0
▁or
-0.065
▁ne
-0.063
ural
-0.186 / 2
▁machine▁translation
-0.038
.
-0.035 / 5
That▁means▁any▁task▁that
-0.063 / 4
▁transforms▁an▁input
0.079 / 5
▁sequence▁to▁an▁output▁sequence
0.035
.
-0.356 / 4
▁This▁includes▁speech▁recognition
0.01
,
-0.017 / 9
▁text-to-speech▁transformation,
0.056 / 2
▁etc.
0.016
.
-0.011
-2-3-4-5-101-4.0929-4.0929base value0.1178290.117829fпо(inputs)4.53 ▁the▁problem▁of▁sequence 0.55 ▁transduction 0.222 ▁that▁have▁been▁gaining▁popularity 0.137 , 0.079 ▁sequence▁to▁an▁output▁sequence 0.056 ▁etc. 0.046 . 0.035 . 0.03 ural 0.028 ▁ne 0.022 s 0.02 ▁type▁of 0.018 ▁network▁architecture 0.016 . 0.01 , -0.417 ▁were▁developed▁to▁solve -0.356 ▁This▁includes▁speech▁recognition -0.186 ▁machine▁translation -0.125 ▁Transformer -0.119 ▁Trans -0.087 s -0.065 ▁ne -0.063 ▁transforms▁an▁input -0.063 ural -0.038 . -0.035 That▁means▁any▁task▁that -0.017 ▁text-to-speech▁transformation, -0.011 -0.004 ▁are▁a -0.003 former -0.0 ▁or
inputs
-0.119
▁Trans
-0.003
former
0.022
s
-0.004 / 2
▁are▁a
0.02 / 2
▁type▁of
0.028
▁ne
0.03
ural
0.018 / 2
▁network▁architecture
0.222 / 5
▁that▁have▁been▁gaining▁popularity
0.046
.
-0.125 / 2
▁Transformer
-0.087
s
-0.417 / 4
▁were▁developed▁to▁solve
4.53 / 4
▁the▁problem▁of▁sequence
0.55 / 3
▁transduction
0.137
,
-0.0
▁or
-0.065
▁ne
-0.063
ural
-0.186 / 2
▁machine▁translation
-0.038
.
-0.035 / 5
That▁means▁any▁task▁that
-0.063 / 4
▁transforms▁an▁input
0.079 / 5
▁sequence▁to▁an▁output▁sequence
0.035
.
-0.356 / 4
▁This▁includes▁speech▁recognition
0.01
,
-0.017 / 9
▁text-to-speech▁transformation,
0.056 / 2
▁etc.
0.016
.
-0.011
-2-6-10-142610-6.27309-6.27309base value2.213312.21331fследовательности(inputs)5.548 ▁the▁problem▁of▁sequence 2.224 ▁sequence▁to▁an▁output▁sequence 0.415 ▁transforms▁an▁input 0.329 ▁transduction 0.267 ▁network▁architecture 0.211 . 0.144 , 0.127 ▁text-to-speech▁transformation, 0.108 ▁or 0.1 ▁machine▁translation 0.086 . 0.082 former 0.066 . 0.053 . 0.015 ▁type▁of 0.015 -0.713 ▁were▁developed▁to▁solve -0.176 That▁means▁any▁task▁that -0.134 s -0.106 s -0.048 ▁that▁have▁been▁gaining▁popularity -0.025 ▁This▁includes▁speech▁recognition -0.021 , -0.02 ▁Trans -0.018 ▁ne -0.013 ▁are▁a -0.012 ural -0.011 ▁Transformer -0.004 ▁ne -0.002 ural -0.002 ▁etc.
inputs
-0.02
▁Trans
0.082
former
-0.134
s
-0.013 / 2
▁are▁a
0.015 / 2
▁type▁of
-0.018
▁ne
-0.012
ural
0.267 / 2
▁network▁architecture
-0.048 / 5
▁that▁have▁been▁gaining▁popularity
0.086
.
-0.011 / 2
▁Transformer
-0.106
s
-0.713 / 4
▁were▁developed▁to▁solve
5.548 / 4
▁the▁problem▁of▁sequence
0.329 / 3
▁transduction
0.144
,
0.108
▁or
-0.004
▁ne
-0.002
ural
0.1 / 2
▁machine▁translation
0.053
.
-0.176 / 5
That▁means▁any▁task▁that
0.415 / 4
▁transforms▁an▁input
2.224 / 5
▁sequence▁to▁an▁output▁sequence
0.066
.
-0.025 / 4
▁This▁includes▁speech▁recognition
-0.021
,
0.127 / 9
▁text-to-speech▁transformation,
-0.002 / 2
▁etc.
0.211
.
0.015
-2-4-602-6.27309-6.27309base value2.213312.21331fследовательности(inputs)5.548 ▁the▁problem▁of▁sequence 2.224 ▁sequence▁to▁an▁output▁sequence 0.415 ▁transforms▁an▁input 0.329 ▁transduction 0.267 ▁network▁architecture 0.211 . 0.144 , 0.127 ▁text-to-speech▁transformation, 0.108 ▁or 0.1 ▁machine▁translation 0.086 . 0.082 former 0.066 . 0.053 . 0.015 ▁type▁of 0.015 -0.713 ▁were▁developed▁to▁solve -0.176 That▁means▁any▁task▁that -0.134 s -0.106 s -0.048 ▁that▁have▁been▁gaining▁popularity -0.025 ▁This▁includes▁speech▁recognition -0.021 , -0.02 ▁Trans -0.018 ▁ne -0.013 ▁are▁a -0.012 ural -0.011 ▁Transformer -0.004 ▁ne -0.002 ural -0.002 ▁etc.
inputs
-0.02
▁Trans
0.082
former
-0.134
s
-0.013 / 2
▁are▁a
0.015 / 2
▁type▁of
-0.018
▁ne
-0.012
ural
0.267 / 2
▁network▁architecture
-0.048 / 5
▁that▁have▁been▁gaining▁popularity
0.086
.
-0.011 / 2
▁Transformer
-0.106
s
-0.713 / 4
▁were▁developed▁to▁solve
5.548 / 4
▁the▁problem▁of▁sequence
0.329 / 3
▁transduction
0.144
,
0.108
▁or
-0.004
▁ne
-0.002
ural
0.1 / 2
▁machine▁translation
0.053
.
-0.176 / 5
That▁means▁any▁task▁that
0.415 / 4
▁transforms▁an▁input
2.224 / 5
▁sequence▁to▁an▁output▁sequence
0.066
.
-0.025 / 4
▁This▁includes▁speech▁recognition
-0.021
,
0.127 / 9
▁text-to-speech▁transformation,
-0.002 / 2
▁etc.
0.211
.
0.015
-2-6-10-142610-2.40176-2.40176base value-0.679077-0.679077f,(inputs)1.143 , 1.051 ▁the▁problem▁of▁sequence 0.856 ▁transduction 0.158 ▁network▁architecture 0.083 That▁means▁any▁task▁that 0.063 ▁that▁have▁been▁gaining▁popularity 0.058 s 0.055 ▁type▁of 0.052 , 0.045 ▁are▁a 0.036 s 0.034 ural 0.033 ▁ne 0.017 ▁Transformer 0.0 . -0.821 ▁sequence▁to▁an▁output▁sequence -0.212 ▁transforms▁an▁input -0.178 ▁etc. -0.159 ▁or -0.095 ural -0.093 ▁machine▁translation -0.088 ▁ne -0.078 . -0.066 . -0.065 . -0.042 former -0.031 ▁text-to-speech▁transformation, -0.013 ▁Trans -0.011 ▁were▁developed▁to▁solve -0.009 ▁This▁includes▁speech▁recognition -0.001
inputs
-0.013
▁Trans
-0.042
former
0.058
s
0.045 / 2
▁are▁a
0.055 / 2
▁type▁of
0.033
▁ne
0.034
ural
0.158 / 2
▁network▁architecture
0.063 / 5
▁that▁have▁been▁gaining▁popularity
-0.066
.
0.017 / 2
▁Transformer
0.036
s
-0.011 / 4
▁were▁developed▁to▁solve
1.051 / 4
▁the▁problem▁of▁sequence
0.856 / 3
▁transduction
1.143
,
-0.159
▁or
-0.088
▁ne
-0.095
ural
-0.093 / 2
▁machine▁translation
-0.078
.
0.083 / 5
That▁means▁any▁task▁that
-0.212 / 4
▁transforms▁an▁input
-0.821 / 5
▁sequence▁to▁an▁output▁sequence
-0.065
.
-0.009 / 4
▁This▁includes▁speech▁recognition
0.052
,
-0.031 / 9
▁text-to-speech▁transformation,
-0.178 / 2
▁etc.
0.0
.
-0.001
-2-3-4-101-2.40176-2.40176base value-0.679077-0.679077f,(inputs)1.143 , 1.051 ▁the▁problem▁of▁sequence 0.856 ▁transduction 0.158 ▁network▁architecture 0.083 That▁means▁any▁task▁that 0.063 ▁that▁have▁been▁gaining▁popularity 0.058 s 0.055 ▁type▁of 0.052 , 0.045 ▁are▁a 0.036 s 0.034 ural 0.033 ▁ne 0.017 ▁Transformer 0.0 . -0.821 ▁sequence▁to▁an▁output▁sequence -0.212 ▁transforms▁an▁input -0.178 ▁etc. -0.159 ▁or -0.095 ural -0.093 ▁machine▁translation -0.088 ▁ne -0.078 . -0.066 . -0.065 . -0.042 former -0.031 ▁text-to-speech▁transformation, -0.013 ▁Trans -0.011 ▁were▁developed▁to▁solve -0.009 ▁This▁includes▁speech▁recognition -0.001
inputs
-0.013
▁Trans
-0.042
former
0.058
s
0.045 / 2
▁are▁a
0.055 / 2
▁type▁of
0.033
▁ne
0.034
ural
0.158 / 2
▁network▁architecture
0.063 / 5
▁that▁have▁been▁gaining▁popularity
-0.066
.
0.017 / 2
▁Transformer
0.036
s
-0.011 / 4
▁were▁developed▁to▁solve
1.051 / 4
▁the▁problem▁of▁sequence
0.856 / 3
▁transduction
1.143
,
-0.159
▁or
-0.088
▁ne
-0.095
ural
-0.093 / 2
▁machine▁translation
-0.078
.
0.083 / 5
That▁means▁any▁task▁that
-0.212 / 4
▁transforms▁an▁input
-0.821 / 5
▁sequence▁to▁an▁output▁sequence
-0.065
.
-0.009 / 4
▁This▁includes▁speech▁recognition
0.052
,
-0.031 / 9
▁text-to-speech▁transformation,
-0.178 / 2
▁etc.
0.0
.
-0.001
-2-6-10-142610-8.84594-8.84594base value1.355131.35513fили(inputs)4.82 ▁or 1.319 ▁the▁problem▁of▁sequence 0.776 ▁transduction 0.624 , 0.552 That▁means▁any▁task▁that 0.448 ▁machine▁translation 0.292 ▁were▁developed▁to▁solve 0.282 ▁transforms▁an▁input 0.225 ▁This▁includes▁speech▁recognition 0.202 ▁type▁of 0.152 ▁network▁architecture 0.139 ural 0.131 ▁are▁a 0.124 ▁ne 0.114 ▁Transformer 0.107 ▁sequence▁to▁an▁output▁sequence 0.092 s 0.089 ▁ne 0.086 ural 0.068 . 0.055 ▁text-to-speech▁transformation, 0.038 ▁that▁have▁been▁gaining▁popularity 0.03 s 0.003 former -0.261 ▁etc. -0.103 . -0.072 . -0.054 ▁Trans -0.038 . -0.033 , -0.003
inputs
-0.054
▁Trans
0.003
former
0.03
s
0.131 / 2
▁are▁a
0.202 / 2
▁type▁of
0.089
▁ne
0.086
ural
0.152 / 2
▁network▁architecture
0.038 / 5
▁that▁have▁been▁gaining▁popularity
-0.072
.
0.114 / 2
▁Transformer
0.092
s
0.292 / 4
▁were▁developed▁to▁solve
1.319 / 4
▁the▁problem▁of▁sequence
0.776 / 3
▁transduction
0.624
,
4.82
▁or
0.124
▁ne
0.139
ural
0.448 / 2
▁machine▁translation
-0.038
.
0.552 / 5
That▁means▁any▁task▁that
0.282 / 4
▁transforms▁an▁input
0.107 / 5
▁sequence▁to▁an▁output▁sequence
-0.103
.
0.225 / 4
▁This▁includes▁speech▁recognition
-0.033
,
0.055 / 9
▁text-to-speech▁transformation,
-0.261 / 2
▁etc.
0.068
.
-0.003
-4-6-8-202-8.84594-8.84594base value1.355131.35513fили(inputs)4.82 ▁or 1.319 ▁the▁problem▁of▁sequence 0.776 ▁transduction 0.624 , 0.552 That▁means▁any▁task▁that 0.448 ▁machine▁translation 0.292 ▁were▁developed▁to▁solve 0.282 ▁transforms▁an▁input 0.225 ▁This▁includes▁speech▁recognition 0.202 ▁type▁of 0.152 ▁network▁architecture 0.139 ural 0.131 ▁are▁a 0.124 ▁ne 0.114 ▁Transformer 0.107 ▁sequence▁to▁an▁output▁sequence 0.092 s 0.089 ▁ne 0.086 ural 0.068 . 0.055 ▁text-to-speech▁transformation, 0.038 ▁that▁have▁been▁gaining▁popularity 0.03 s 0.003 former -0.261 ▁etc. -0.103 . -0.072 . -0.054 ▁Trans -0.038 . -0.033 , -0.003
inputs
-0.054
▁Trans
0.003
former
0.03
s
0.131 / 2
▁are▁a
0.202 / 2
▁type▁of
0.089
▁ne
0.086
ural
0.152 / 2
▁network▁architecture
0.038 / 5
▁that▁have▁been▁gaining▁popularity
-0.072
.
0.114 / 2
▁Transformer
0.092
s
0.292 / 4
▁were▁developed▁to▁solve
1.319 / 4
▁the▁problem▁of▁sequence
0.776 / 3
▁transduction
0.624
,
4.82
▁or
0.124
▁ne
0.139
ural
0.448 / 2
▁machine▁translation
-0.038
.
0.552 / 5
That▁means▁any▁task▁that
0.282 / 4
▁transforms▁an▁input
0.107 / 5
▁sequence▁to▁an▁output▁sequence
-0.103
.
0.225 / 4
▁This▁includes▁speech▁recognition
-0.033
,
0.055 / 9
▁text-to-speech▁transformation,
-0.261 / 2
▁etc.
0.068
.
-0.003
-2-6-10-142610-9.51403-9.51403base value0.63560.6356fней(inputs)3.765 ▁ne 3.598 ural 0.923 ▁were▁developed▁to▁solve 0.825 ▁or 0.359 ▁transforms▁an▁input 0.273 ▁ne 0.262 ural 0.256 ▁Trans 0.172 former 0.162 . 0.119 . 0.109 ▁that▁have▁been▁gaining▁popularity 0.107 ▁This▁includes▁speech▁recognition 0.074 ▁text-to-speech▁transformation, 0.071 s 0.068 ▁etc. 0.057 , 0.045 ▁network▁architecture 0.025 That▁means▁any▁task▁that 0.015 . 0.007 . -0.395 ▁the▁problem▁of▁sequence -0.323 ▁machine▁translation -0.113 ▁are▁a -0.108 ▁type▁of -0.057 ▁transduction -0.052 , -0.037 ▁sequence▁to▁an▁output▁sequence -0.029 ▁Transformer -0.02 s -0.01
inputs
0.256
▁Trans
0.172
former
0.071
s
-0.113 / 2
▁are▁a
-0.108 / 2
▁type▁of
0.273
▁ne
0.262
ural
0.045 / 2
▁network▁architecture
0.109 / 5
▁that▁have▁been▁gaining▁popularity
0.015
.
-0.029 / 2
▁Transformer
-0.02
s
0.923 / 4
▁were▁developed▁to▁solve
-0.395 / 4
▁the▁problem▁of▁sequence
-0.057 / 3
▁transduction
-0.052
,
0.825
▁or
3.765
▁ne
3.598
ural
-0.323 / 2
▁machine▁translation
0.162
.
0.025 / 5
That▁means▁any▁task▁that
0.359 / 4
▁transforms▁an▁input
-0.037 / 5
▁sequence▁to▁an▁output▁sequence
0.007
.
0.107 / 4
▁This▁includes▁speech▁recognition
0.057
,
0.074 / 9
▁text-to-speech▁transformation,
0.068 / 2
▁etc.
0.119
.
-0.01
-4-6-8-10-20-9.51403-9.51403base value0.63560.6356fней(inputs)3.765 ▁ne 3.598 ural 0.923 ▁were▁developed▁to▁solve 0.825 ▁or 0.359 ▁transforms▁an▁input 0.273 ▁ne 0.262 ural 0.256 ▁Trans 0.172 former 0.162 . 0.119 . 0.109 ▁that▁have▁been▁gaining▁popularity 0.107 ▁This▁includes▁speech▁recognition 0.074 ▁text-to-speech▁transformation, 0.071 s 0.068 ▁etc. 0.057 , 0.045 ▁network▁architecture 0.025 That▁means▁any▁task▁that 0.015 . 0.007 . -0.395 ▁the▁problem▁of▁sequence -0.323 ▁machine▁translation -0.113 ▁are▁a -0.108 ▁type▁of -0.057 ▁transduction -0.052 , -0.037 ▁sequence▁to▁an▁output▁sequence -0.029 ▁Transformer -0.02 s -0.01
inputs
0.256
▁Trans
0.172
former
0.071
s
-0.113 / 2
▁are▁a
-0.108 / 2
▁type▁of
0.273
▁ne
0.262
ural
0.045 / 2
▁network▁architecture
0.109 / 5
▁that▁have▁been▁gaining▁popularity
0.015
.
-0.029 / 2
▁Transformer
-0.02
s
0.923 / 4
▁were▁developed▁to▁solve
-0.395 / 4
▁the▁problem▁of▁sequence
-0.057 / 3
▁transduction
-0.052
,
0.825
▁or
3.765
▁ne
3.598
ural
-0.323 / 2
▁machine▁translation
0.162
.
0.025 / 5
That▁means▁any▁task▁that
0.359 / 4
▁transforms▁an▁input
-0.037 / 5
▁sequence▁to▁an▁output▁sequence
0.007
.
0.107 / 4
▁This▁includes▁speech▁recognition
0.057
,
0.074 / 9
▁text-to-speech▁transformation,
0.068 / 2
▁etc.
0.119
.
-0.01
-2-6-10-142610-2.17552-2.17552base value1.574491.57449fрон(inputs)3.0 ▁neural 1.261 ural 1.255 ▁ne 0.228 ▁machine▁translation 0.066 ▁network▁architecture 0.037 0.035 ▁or 0.02 ▁are▁a 0.009 That▁means▁any▁task▁that -0.247 ▁sequence▁to▁an▁output▁sequence -0.206 ▁Transformer -0.204 ▁This▁includes▁speech▁recognition -0.198 . -0.147 ▁text-to-speech▁transformation, -0.144 s -0.139 . -0.128 ▁Trans -0.122 ▁that▁have▁been▁gaining▁popularity -0.117 former -0.098 ▁etc. -0.092 . -0.054 ▁transforms▁an▁input -0.053 s -0.047 . -0.046 ▁transduction -0.033 ▁type▁of -0.026 , -0.026 , -0.022 ▁were▁developed▁to▁solve -0.014 ▁the▁problem▁of▁sequence
inputs
-0.128
▁Trans
-0.117
former
-0.053
s
0.02 / 2
▁are▁a
-0.033 / 2
▁type▁of
1.255
▁ne
1.261
ural
0.066 / 2
▁network▁architecture
-0.122 / 5
▁that▁have▁been▁gaining▁popularity
-0.092
.
-0.206 / 2
▁Transformer
-0.144
s
-0.022 / 4
▁were▁developed▁to▁solve
-0.014 / 4
▁the▁problem▁of▁sequence
-0.046 / 3
▁transduction
-0.026
,
0.035
▁or
3.0 / 2
▁neural
0.228 / 2
▁machine▁translation
-0.139
.
0.009 / 5
That▁means▁any▁task▁that
-0.054 / 4
▁transforms▁an▁input
-0.247 / 5
▁sequence▁to▁an▁output▁sequence
-0.047
.
-0.204 / 4
▁This▁includes▁speech▁recognition
-0.026
,
-0.147 / 9
▁text-to-speech▁transformation,
-0.098 / 2
▁etc.
-0.198
.
0.037
-0-1-2-3-4123-2.17552-2.17552base value1.574491.57449fрон(inputs)3.0 ▁neural 1.261 ural 1.255 ▁ne 0.228 ▁machine▁translation 0.066 ▁network▁architecture 0.037 0.035 ▁or 0.02 ▁are▁a 0.009 That▁means▁any▁task▁that -0.247 ▁sequence▁to▁an▁output▁sequence -0.206 ▁Transformer -0.204 ▁This▁includes▁speech▁recognition -0.198 . -0.147 ▁text-to-speech▁transformation, -0.144 s -0.139 . -0.128 ▁Trans -0.122 ▁that▁have▁been▁gaining▁popularity -0.117 former -0.098 ▁etc. -0.092 . -0.054 ▁transforms▁an▁input -0.053 s -0.047 . -0.046 ▁transduction -0.033 ▁type▁of -0.026 , -0.026 , -0.022 ▁were▁developed▁to▁solve -0.014 ▁the▁problem▁of▁sequence
inputs
-0.128
▁Trans
-0.117
former
-0.053
s
0.02 / 2
▁are▁a
-0.033 / 2
▁type▁of
1.255
▁ne
1.261
ural
0.066 / 2
▁network▁architecture
-0.122 / 5
▁that▁have▁been▁gaining▁popularity
-0.092
.
-0.206 / 2
▁Transformer
-0.144
s
-0.022 / 4
▁were▁developed▁to▁solve
-0.014 / 4
▁the▁problem▁of▁sequence
-0.046 / 3
▁transduction
-0.026
,
0.035
▁or
3.0 / 2
▁neural
0.228 / 2
▁machine▁translation
-0.139
.
0.009 / 5
That▁means▁any▁task▁that
-0.054 / 4
▁transforms▁an▁input
-0.247 / 5
▁sequence▁to▁an▁output▁sequence
-0.047
.
-0.204 / 4
▁This▁includes▁speech▁recognition
-0.026
,
-0.147 / 9
▁text-to-speech▁transformation,
-0.098 / 2
▁etc.
-0.198
.
0.037
-2-6-10-142610-3.20022-3.20022base value2.014112.01411fного(inputs)2.186 ▁machine▁translation 0.516 . 0.37 ▁the▁problem▁of▁sequence 0.253 . 0.217 ▁transduction 0.21 ▁were▁developed▁to▁solve 0.187 ▁Transformer 0.181 ▁network▁architecture 0.163 s 0.145 , 0.136 ▁type▁of 0.107 ▁This▁includes▁speech▁recognition 0.098 ▁are▁a 0.094 ▁or 0.06 s 0.06 ▁text-to-speech▁transformation, 0.059 ural 0.052 ▁etc. 0.048 ▁that▁have▁been▁gaining▁popularity 0.042 . 0.039 ▁ne 0.025 ▁transforms▁an▁input 0.02 former 0.019 That▁means▁any▁task▁that 0.016 , 0.013 . 0.008 ▁Trans 0.001 -0.066 ▁sequence▁to▁an▁output▁sequence -0.024 ural -0.023 ▁ne
inputs
0.008
▁Trans
0.02
former
0.06
s
0.098 / 2
▁are▁a
0.136 / 2
▁type▁of
-0.023
▁ne
-0.024
ural
0.181 / 2
▁network▁architecture
0.048 / 5
▁that▁have▁been▁gaining▁popularity
0.013
.
0.187 / 2
▁Transformer
0.163
s
0.21 / 4
▁were▁developed▁to▁solve
0.37 / 4
▁the▁problem▁of▁sequence
0.217 / 3
▁transduction
0.145
,
0.094
▁or
0.039
▁ne
0.059
ural
2.186 / 2
▁machine▁translation
0.516
.
0.019 / 5
That▁means▁any▁task▁that
0.025 / 4
▁transforms▁an▁input
-0.066 / 5
▁sequence▁to▁an▁output▁sequence
0.042
.
0.107 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.06 / 9
▁text-to-speech▁transformation,
0.052 / 2
▁etc.
0.253
.
0.001
-1-2-3012-3.20022-3.20022base value2.014112.01411fного(inputs)2.186 ▁machine▁translation 0.516 . 0.37 ▁the▁problem▁of▁sequence 0.253 . 0.217 ▁transduction 0.21 ▁were▁developed▁to▁solve 0.187 ▁Transformer 0.181 ▁network▁architecture 0.163 s 0.145 , 0.136 ▁type▁of 0.107 ▁This▁includes▁speech▁recognition 0.098 ▁are▁a 0.094 ▁or 0.06 s 0.06 ▁text-to-speech▁transformation, 0.059 ural 0.052 ▁etc. 0.048 ▁that▁have▁been▁gaining▁popularity 0.042 . 0.039 ▁ne 0.025 ▁transforms▁an▁input 0.02 former 0.019 That▁means▁any▁task▁that 0.016 , 0.013 . 0.008 ▁Trans 0.001 -0.066 ▁sequence▁to▁an▁output▁sequence -0.024 ural -0.023 ▁ne
inputs
0.008
▁Trans
0.02
former
0.06
s
0.098 / 2
▁are▁a
0.136 / 2
▁type▁of
-0.023
▁ne
-0.024
ural
0.181 / 2
▁network▁architecture
0.048 / 5
▁that▁have▁been▁gaining▁popularity
0.013
.
0.187 / 2
▁Transformer
0.163
s
0.21 / 4
▁were▁developed▁to▁solve
0.37 / 4
▁the▁problem▁of▁sequence
0.217 / 3
▁transduction
0.145
,
0.094
▁or
0.039
▁ne
0.059
ural
2.186 / 2
▁machine▁translation
0.516
.
0.019 / 5
That▁means▁any▁task▁that
0.025 / 4
▁transforms▁an▁input
-0.066 / 5
▁sequence▁to▁an▁output▁sequence
0.042
.
0.107 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.06 / 9
▁text-to-speech▁transformation,
0.052 / 2
▁etc.
0.253
.
0.001
-2-6-10-142610-10.2591-10.2591base value-0.335648-0.335648fмашин(inputs)5.729 ▁machine▁translation 1.942 ▁ne 1.915 ural 0.244 ▁text-to-speech▁transformation, 0.24 . 0.19 ▁network▁architecture 0.162 ▁ne 0.162 ▁or 0.158 ural 0.095 ▁transduction 0.094 ▁etc. 0.058 ▁that▁have▁been▁gaining▁popularity 0.047 ▁the▁problem▁of▁sequence 0.035 , 0.032 . 0.03 ▁Trans 0.016 former 0.013 , 0.0 -0.376 ▁sequence▁to▁an▁output▁sequence -0.305 ▁transforms▁an▁input -0.169 ▁were▁developed▁to▁solve -0.154 ▁This▁includes▁speech▁recognition -0.09 That▁means▁any▁task▁that -0.037 . -0.032 ▁type▁of -0.026 ▁are▁a -0.025 . -0.023 s -0.001 ▁Transformer -0.001 s
inputs
0.03
▁Trans
0.016
former
-0.001
s
-0.026 / 2
▁are▁a
-0.032 / 2
▁type▁of
0.162
▁ne
0.158
ural
0.19 / 2
▁network▁architecture
0.058 / 5
▁that▁have▁been▁gaining▁popularity
0.032
.
-0.001 / 2
▁Transformer
-0.023
s
-0.169 / 4
▁were▁developed▁to▁solve
0.047 / 4
▁the▁problem▁of▁sequence
0.095 / 3
▁transduction
0.035
,
0.162
▁or
1.942
▁ne
1.915
ural
5.729 / 2
▁machine▁translation
0.24
.
-0.09 / 5
That▁means▁any▁task▁that
-0.305 / 4
▁transforms▁an▁input
-0.376 / 5
▁sequence▁to▁an▁output▁sequence
-0.025
.
-0.154 / 4
▁This▁includes▁speech▁recognition
0.013
,
0.244 / 9
▁text-to-speech▁transformation,
0.094 / 2
▁etc.
-0.037
.
0.0
-5-7-9-11-3-11-10.2591-10.2591base value-0.335648-0.335648fмашин(inputs)5.729 ▁machine▁translation 1.942 ▁ne 1.915 ural 0.244 ▁text-to-speech▁transformation, 0.24 . 0.19 ▁network▁architecture 0.162 ▁ne 0.162 ▁or 0.158 ural 0.095 ▁transduction 0.094 ▁etc. 0.058 ▁that▁have▁been▁gaining▁popularity 0.047 ▁the▁problem▁of▁sequence 0.035 , 0.032 . 0.03 ▁Trans 0.016 former 0.013 , 0.0 -0.376 ▁sequence▁to▁an▁output▁sequence -0.305 ▁transforms▁an▁input -0.169 ▁were▁developed▁to▁solve -0.154 ▁This▁includes▁speech▁recognition -0.09 That▁means▁any▁task▁that -0.037 . -0.032 ▁type▁of -0.026 ▁are▁a -0.025 . -0.023 s -0.001 ▁Transformer -0.001 s
inputs
0.03
▁Trans
0.016
former
-0.001
s
-0.026 / 2
▁are▁a
-0.032 / 2
▁type▁of
0.162
▁ne
0.158
ural
0.19 / 2
▁network▁architecture
0.058 / 5
▁that▁have▁been▁gaining▁popularity
0.032
.
-0.001 / 2
▁Transformer
-0.023
s
-0.169 / 4
▁were▁developed▁to▁solve
0.047 / 4
▁the▁problem▁of▁sequence
0.095 / 3
▁transduction
0.035
,
0.162
▁or
1.942
▁ne
1.915
ural
5.729 / 2
▁machine▁translation
0.24
.
-0.09 / 5
That▁means▁any▁task▁that
-0.305 / 4
▁transforms▁an▁input
-0.376 / 5
▁sequence▁to▁an▁output▁sequence
-0.025
.
-0.154 / 4
▁This▁includes▁speech▁recognition
0.013
,
0.244 / 9
▁text-to-speech▁transformation,
0.094 / 2
▁etc.
-0.037
.
0.0
-2-6-10-142610-1.41829-1.41829base value2.411762.41176fного(inputs)2.309 ▁machine▁translation 0.424 . 0.398 ▁network▁architecture 0.203 . 0.14 ▁sequence▁to▁an▁output▁sequence 0.122 ▁transduction 0.116 ▁etc. 0.113 ▁the▁problem▁of▁sequence 0.074 ▁Trans 0.072 . 0.07 , 0.067 s 0.061 ▁text-to-speech▁transformation, 0.057 ▁transforms▁an▁input 0.049 former 0.048 , 0.041 s 0.039 ▁Transformer 0.037 ▁type▁of 0.034 ▁that▁have▁been▁gaining▁popularity 0.021 . 0.013 ▁This▁includes▁speech▁recognition 0.01 -0.252 ural -0.238 ▁ne -0.071 That▁means▁any▁task▁that -0.064 ▁or -0.038 ▁were▁developed▁to▁solve -0.014 ▁are▁a -0.007 ural -0.006 ▁ne
inputs
0.074
▁Trans
0.049
former
0.041
s
-0.014 / 2
▁are▁a
0.037 / 2
▁type▁of
-0.006
▁ne
-0.007
ural
0.398 / 2
▁network▁architecture
0.034 / 5
▁that▁have▁been▁gaining▁popularity
0.021
.
0.039 / 2
▁Transformer
0.067
s
-0.038 / 4
▁were▁developed▁to▁solve
0.113 / 4
▁the▁problem▁of▁sequence
0.122 / 3
▁transduction
0.07
,
-0.064
▁or
-0.238
▁ne
-0.252
ural
2.309 / 2
▁machine▁translation
0.424
.
-0.071 / 5
That▁means▁any▁task▁that
0.057 / 4
▁transforms▁an▁input
0.14 / 5
▁sequence▁to▁an▁output▁sequence
0.072
.
0.013 / 4
▁This▁includes▁speech▁recognition
0.048
,
0.061 / 9
▁text-to-speech▁transformation,
0.116 / 2
▁etc.
0.203
.
0.01
0-1-2123-1.41829-1.41829base value2.411762.41176fного(inputs)2.309 ▁machine▁translation 0.424 . 0.398 ▁network▁architecture 0.203 . 0.14 ▁sequence▁to▁an▁output▁sequence 0.122 ▁transduction 0.116 ▁etc. 0.113 ▁the▁problem▁of▁sequence 0.074 ▁Trans 0.072 . 0.07 , 0.067 s 0.061 ▁text-to-speech▁transformation, 0.057 ▁transforms▁an▁input 0.049 former 0.048 , 0.041 s 0.039 ▁Transformer 0.037 ▁type▁of 0.034 ▁that▁have▁been▁gaining▁popularity 0.021 . 0.013 ▁This▁includes▁speech▁recognition 0.01 -0.252 ural -0.238 ▁ne -0.071 That▁means▁any▁task▁that -0.064 ▁or -0.038 ▁were▁developed▁to▁solve -0.014 ▁are▁a -0.007 ural -0.006 ▁ne
inputs
0.074
▁Trans
0.049
former
0.041
s
-0.014 / 2
▁are▁a
0.037 / 2
▁type▁of
-0.006
▁ne
-0.007
ural
0.398 / 2
▁network▁architecture
0.034 / 5
▁that▁have▁been▁gaining▁popularity
0.021
.
0.039 / 2
▁Transformer
0.067
s
-0.038 / 4
▁were▁developed▁to▁solve
0.113 / 4
▁the▁problem▁of▁sequence
0.122 / 3
▁transduction
0.07
,
-0.064
▁or
-0.238
▁ne
-0.252
ural
2.309 / 2
▁machine▁translation
0.424
.
-0.071 / 5
That▁means▁any▁task▁that
0.057 / 4
▁transforms▁an▁input
0.14 / 5
▁sequence▁to▁an▁output▁sequence
0.072
.
0.013 / 4
▁This▁includes▁speech▁recognition
0.048
,
0.061 / 9
▁text-to-speech▁transformation,
0.116 / 2
▁etc.
0.203
.
0.01
-2-6-10-142610-6.04726-6.04726base value2.091682.09168fперевода(inputs)5.151 ▁machine▁translation 1.189 . 0.317 ▁transduction 0.315 ▁sequence▁to▁an▁output▁sequence 0.263 ▁text-to-speech▁transformation, 0.162 ▁This▁includes▁speech▁recognition 0.151 ▁network▁architecture 0.147 ▁Trans 0.111 ▁that▁have▁been▁gaining▁popularity 0.1 , 0.078 former 0.073 ▁transforms▁an▁input 0.07 ▁the▁problem▁of▁sequence 0.062 ▁Transformer 0.059 . 0.045 ural 0.045 ▁ne 0.043 ▁etc. 0.028 ▁or 0.012 s 0.006 ▁ne 0.0 ural -0.062 ▁are▁a -0.061 . -0.046 That▁means▁any▁task▁that -0.045 s -0.031 ▁were▁developed▁to▁solve -0.018 -0.01 , -0.009 ▁type▁of -0.007 .
inputs
0.147
▁Trans
0.078
former
-0.045
s
-0.062 / 2
▁are▁a
-0.009 / 2
▁type▁of
0.045
▁ne
0.045
ural
0.151 / 2
▁network▁architecture
0.111 / 5
▁that▁have▁been▁gaining▁popularity
0.059
.
0.062 / 2
▁Transformer
0.012
s
-0.031 / 4
▁were▁developed▁to▁solve
0.07 / 4
▁the▁problem▁of▁sequence
0.317 / 3
▁transduction
0.1
,
0.028
▁or
0.006
▁ne
0.0
ural
5.151 / 2
▁machine▁translation
1.189
.
-0.046 / 5
That▁means▁any▁task▁that
0.073 / 4
▁transforms▁an▁input
0.315 / 5
▁sequence▁to▁an▁output▁sequence
-0.007
.
0.162 / 4
▁This▁includes▁speech▁recognition
-0.01
,
0.263 / 9
▁text-to-speech▁transformation,
0.043 / 2
▁etc.
-0.061
.
-0.018
-2-3-4-5-6-1012-6.04726-6.04726base value2.091682.09168fперевода(inputs)5.151 ▁machine▁translation 1.189 . 0.317 ▁transduction 0.315 ▁sequence▁to▁an▁output▁sequence 0.263 ▁text-to-speech▁transformation, 0.162 ▁This▁includes▁speech▁recognition 0.151 ▁network▁architecture 0.147 ▁Trans 0.111 ▁that▁have▁been▁gaining▁popularity 0.1 , 0.078 former 0.073 ▁transforms▁an▁input 0.07 ▁the▁problem▁of▁sequence 0.062 ▁Transformer 0.059 . 0.045 ural 0.045 ▁ne 0.043 ▁etc. 0.028 ▁or 0.012 s 0.006 ▁ne 0.0 ural -0.062 ▁are▁a -0.061 . -0.046 That▁means▁any▁task▁that -0.045 s -0.031 ▁were▁developed▁to▁solve -0.018 -0.01 , -0.009 ▁type▁of -0.007 .
inputs
0.147
▁Trans
0.078
former
-0.045
s
-0.062 / 2
▁are▁a
-0.009 / 2
▁type▁of
0.045
▁ne
0.045
ural
0.151 / 2
▁network▁architecture
0.111 / 5
▁that▁have▁been▁gaining▁popularity
0.059
.
0.062 / 2
▁Transformer
0.012
s
-0.031 / 4
▁were▁developed▁to▁solve
0.07 / 4
▁the▁problem▁of▁sequence
0.317 / 3
▁transduction
0.1
,
0.028
▁or
0.006
▁ne
0.0
ural
5.151 / 2
▁machine▁translation
1.189
.
-0.046 / 5
That▁means▁any▁task▁that
0.073 / 4
▁transforms▁an▁input
0.315 / 5
▁sequence▁to▁an▁output▁sequence
-0.007
.
0.162 / 4
▁This▁includes▁speech▁recognition
-0.01
,
0.263 / 9
▁text-to-speech▁transformation,
0.043 / 2
▁etc.
-0.061
.
-0.018
-2-6-10-142610-0.439062-0.439062base value2.12672.1267f.(inputs)1.0 . 0.995 That▁means▁any▁task▁that 0.73 ▁machine▁translation 0.235 ▁This▁includes▁speech▁recognition 0.186 ▁transforms▁an▁input 0.107 ▁or 0.076 ▁that▁have▁been▁gaining▁popularity 0.036 s 0.032 ▁are▁a 0.007 ▁ne 0.004 ▁type▁of 0.003 ▁network▁architecture -0.145 ▁were▁developed▁to▁solve -0.117 ▁etc. -0.09 ▁the▁problem▁of▁sequence -0.067 ▁text-to-speech▁transformation, -0.061 ▁transduction -0.059 . -0.05 ▁Transformer -0.039 ▁Trans -0.036 s -0.032 former -0.028 ural -0.021 . -0.021 ural -0.02 , -0.017 ▁ne -0.014 -0.013 . -0.01 , -0.003 ▁sequence▁to▁an▁output▁sequence
inputs
-0.039
▁Trans
-0.032
former
0.036
s
0.032 / 2
▁are▁a
0.004 / 2
▁type▁of
-0.017
▁ne
-0.021
ural
0.003 / 2
▁network▁architecture
0.076 / 5
▁that▁have▁been▁gaining▁popularity
-0.013
.
-0.05 / 2
▁Transformer
-0.036
s
-0.145 / 4
▁were▁developed▁to▁solve
-0.09 / 4
▁the▁problem▁of▁sequence
-0.061 / 3
▁transduction
-0.01
,
0.107
▁or
0.007
▁ne
-0.028
ural
0.73 / 2
▁machine▁translation
1.0
.
0.995 / 5
That▁means▁any▁task▁that
0.186 / 4
▁transforms▁an▁input
-0.003 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
0.235 / 4
▁This▁includes▁speech▁recognition
-0.02
,
-0.067 / 9
▁text-to-speech▁transformation,
-0.117 / 2
▁etc.
-0.059
.
-0.014
10-123-0.439062-0.439062base value2.12672.1267f.(inputs)1.0 . 0.995 That▁means▁any▁task▁that 0.73 ▁machine▁translation 0.235 ▁This▁includes▁speech▁recognition 0.186 ▁transforms▁an▁input 0.107 ▁or 0.076 ▁that▁have▁been▁gaining▁popularity 0.036 s 0.032 ▁are▁a 0.007 ▁ne 0.004 ▁type▁of 0.003 ▁network▁architecture -0.145 ▁were▁developed▁to▁solve -0.117 ▁etc. -0.09 ▁the▁problem▁of▁sequence -0.067 ▁text-to-speech▁transformation, -0.061 ▁transduction -0.059 . -0.05 ▁Transformer -0.039 ▁Trans -0.036 s -0.032 former -0.028 ural -0.021 . -0.021 ural -0.02 , -0.017 ▁ne -0.014 -0.013 . -0.01 , -0.003 ▁sequence▁to▁an▁output▁sequence
inputs
-0.039
▁Trans
-0.032
former
0.036
s
0.032 / 2
▁are▁a
0.004 / 2
▁type▁of
-0.017
▁ne
-0.021
ural
0.003 / 2
▁network▁architecture
0.076 / 5
▁that▁have▁been▁gaining▁popularity
-0.013
.
-0.05 / 2
▁Transformer
-0.036
s
-0.145 / 4
▁were▁developed▁to▁solve
-0.09 / 4
▁the▁problem▁of▁sequence
-0.061 / 3
▁transduction
-0.01
,
0.107
▁or
0.007
▁ne
-0.028
ural
0.73 / 2
▁machine▁translation
1.0
.
0.995 / 5
That▁means▁any▁task▁that
0.186 / 4
▁transforms▁an▁input
-0.003 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
0.235 / 4
▁This▁includes▁speech▁recognition
-0.02
,
-0.067 / 9
▁text-to-speech▁transformation,
-0.117 / 2
▁etc.
-0.059
.
-0.014
-2-6-10-142610-6.98785-6.98785base value1.571591.57159fЭто(inputs)4.278 That▁means▁any▁task▁that 1.322 ▁This▁includes▁speech▁recognition 0.38 ▁machine▁translation 0.371 . 0.354 ▁text-to-speech▁transformation, 0.335 ▁that▁have▁been▁gaining▁popularity 0.241 ▁were▁developed▁to▁solve 0.224 ▁network▁architecture 0.191 ▁the▁problem▁of▁sequence 0.178 ▁transforms▁an▁input 0.15 ural 0.143 ▁ne 0.13 former 0.121 ▁Trans 0.088 s 0.084 ▁transduction 0.083 ural 0.068 , 0.067 ▁ne 0.055 ▁type▁of 0.051 . 0.048 ▁sequence▁to▁an▁output▁sequence 0.047 s 0.035 ▁Transformer 0.025 ▁are▁a -0.289 . -0.144 ▁etc. -0.03 -0.025 ▁or -0.013 , -0.011 .
inputs
0.121
▁Trans
0.13
former
0.047
s
0.025 / 2
▁are▁a
0.055 / 2
▁type▁of
0.143
▁ne
0.15
ural
0.224 / 2
▁network▁architecture
0.335 / 5
▁that▁have▁been▁gaining▁popularity
-0.011
.
0.035 / 2
▁Transformer
0.088
s
0.241 / 4
▁were▁developed▁to▁solve
0.191 / 4
▁the▁problem▁of▁sequence
0.084 / 3
▁transduction
0.068
,
-0.025
▁or
0.067
▁ne
0.083
ural
0.38 / 2
▁machine▁translation
0.371
.
4.278 / 5
That▁means▁any▁task▁that
0.178 / 4
▁transforms▁an▁input
0.048 / 5
▁sequence▁to▁an▁output▁sequence
0.051
.
1.322 / 4
▁This▁includes▁speech▁recognition
-0.013
,
0.354 / 9
▁text-to-speech▁transformation,
-0.144 / 2
▁etc.
-0.289
.
-0.03
-3-5-7-11-6.98785-6.98785base value1.571591.57159fЭто(inputs)4.278 That▁means▁any▁task▁that 1.322 ▁This▁includes▁speech▁recognition 0.38 ▁machine▁translation 0.371 . 0.354 ▁text-to-speech▁transformation, 0.335 ▁that▁have▁been▁gaining▁popularity 0.241 ▁were▁developed▁to▁solve 0.224 ▁network▁architecture 0.191 ▁the▁problem▁of▁sequence 0.178 ▁transforms▁an▁input 0.15 ural 0.143 ▁ne 0.13 former 0.121 ▁Trans 0.088 s 0.084 ▁transduction 0.083 ural 0.068 , 0.067 ▁ne 0.055 ▁type▁of 0.051 . 0.048 ▁sequence▁to▁an▁output▁sequence 0.047 s 0.035 ▁Transformer 0.025 ▁are▁a -0.289 . -0.144 ▁etc. -0.03 -0.025 ▁or -0.013 , -0.011 .
inputs
0.121
▁Trans
0.13
former
0.047
s
0.025 / 2
▁are▁a
0.055 / 2
▁type▁of
0.143
▁ne
0.15
ural
0.224 / 2
▁network▁architecture
0.335 / 5
▁that▁have▁been▁gaining▁popularity
-0.011
.
0.035 / 2
▁Transformer
0.088
s
0.241 / 4
▁were▁developed▁to▁solve
0.191 / 4
▁the▁problem▁of▁sequence
0.084 / 3
▁transduction
0.068
,
-0.025
▁or
0.067
▁ne
0.083
ural
0.38 / 2
▁machine▁translation
0.371
.
4.278 / 5
That▁means▁any▁task▁that
0.178 / 4
▁transforms▁an▁input
0.048 / 5
▁sequence▁to▁an▁output▁sequence
0.051
.
1.322 / 4
▁This▁includes▁speech▁recognition
-0.013
,
0.354 / 9
▁text-to-speech▁transformation,
-0.144 / 2
▁etc.
-0.289
.
-0.03
-2-6-10-142610-4.08601-4.08601base value1.247321.24732fозначает(inputs)4.769 That▁means▁any▁task▁that 0.327 ▁transforms▁an▁input 0.326 ▁This▁includes▁speech▁recognition 0.254 . 0.196 ▁or 0.191 . 0.14 ▁etc. 0.139 ▁machine▁translation 0.12 . 0.113 ▁Transformer 0.078 ural 0.078 s 0.07 ▁ne 0.039 former 0.026 ▁transduction 0.022 , 0.001 ▁Trans -0.399 ▁sequence▁to▁an▁output▁sequence -0.389 ▁text-to-speech▁transformation, -0.271 ▁are▁a -0.208 ▁that▁have▁been▁gaining▁popularity -0.051 ▁type▁of -0.05 s -0.047 ▁were▁developed▁to▁solve -0.035 ▁the▁problem▁of▁sequence -0.033 -0.02 . -0.02 , -0.015 ▁network▁architecture -0.015 ural -0.001 ▁ne
inputs
0.001
▁Trans
0.039
former
-0.05
s
-0.271 / 2
▁are▁a
-0.051 / 2
▁type▁of
0.07
▁ne
0.078
ural
-0.015 / 2
▁network▁architecture
-0.208 / 5
▁that▁have▁been▁gaining▁popularity
-0.02
.
0.113 / 2
▁Transformer
0.078
s
-0.047 / 4
▁were▁developed▁to▁solve
-0.035 / 4
▁the▁problem▁of▁sequence
0.026 / 3
▁transduction
0.022
,
0.196
▁or
-0.001
▁ne
-0.015
ural
0.139 / 2
▁machine▁translation
0.254
.
4.769 / 5
That▁means▁any▁task▁that
0.327 / 4
▁transforms▁an▁input
-0.399 / 5
▁sequence▁to▁an▁output▁sequence
0.12
.
0.326 / 4
▁This▁includes▁speech▁recognition
-0.02
,
-0.389 / 9
▁text-to-speech▁transformation,
0.14 / 2
▁etc.
0.191
.
-0.033
-1-2-3-4-5012-4.08601-4.08601base value1.247321.24732fозначает(inputs)4.769 That▁means▁any▁task▁that 0.327 ▁transforms▁an▁input 0.326 ▁This▁includes▁speech▁recognition 0.254 . 0.196 ▁or 0.191 . 0.14 ▁etc. 0.139 ▁machine▁translation 0.12 . 0.113 ▁Transformer 0.078 ural 0.078 s 0.07 ▁ne 0.039 former 0.026 ▁transduction 0.022 , 0.001 ▁Trans -0.399 ▁sequence▁to▁an▁output▁sequence -0.389 ▁text-to-speech▁transformation, -0.271 ▁are▁a -0.208 ▁that▁have▁been▁gaining▁popularity -0.051 ▁type▁of -0.05 s -0.047 ▁were▁developed▁to▁solve -0.035 ▁the▁problem▁of▁sequence -0.033 -0.02 . -0.02 , -0.015 ▁network▁architecture -0.015 ural -0.001 ▁ne
inputs
0.001
▁Trans
0.039
former
-0.05
s
-0.271 / 2
▁are▁a
-0.051 / 2
▁type▁of
0.07
▁ne
0.078
ural
-0.015 / 2
▁network▁architecture
-0.208 / 5
▁that▁have▁been▁gaining▁popularity
-0.02
.
0.113 / 2
▁Transformer
0.078
s
-0.047 / 4
▁were▁developed▁to▁solve
-0.035 / 4
▁the▁problem▁of▁sequence
0.026 / 3
▁transduction
0.022
,
0.196
▁or
-0.001
▁ne
-0.015
ural
0.139 / 2
▁machine▁translation
0.254
.
4.769 / 5
That▁means▁any▁task▁that
0.327 / 4
▁transforms▁an▁input
-0.399 / 5
▁sequence▁to▁an▁output▁sequence
0.12
.
0.326 / 4
▁This▁includes▁speech▁recognition
-0.02
,
-0.389 / 9
▁text-to-speech▁transformation,
0.14 / 2
▁etc.
0.191
.
-0.033
-2-6-10-142610-10.0407-10.0407base value0.5506540.550654fлюбую(inputs)9.1 That▁means▁any▁task▁that 0.522 ▁sequence▁to▁an▁output▁sequence 0.197 ▁or 0.182 . 0.165 ▁Trans 0.133 . 0.128 former 0.111 ▁transforms▁an▁input 0.107 ▁the▁problem▁of▁sequence 0.094 ural 0.092 ▁network▁architecture 0.086 ▁ne 0.077 ▁ne 0.065 ▁etc. 0.064 ural 0.064 . 0.049 0.044 ▁Transformer 0.036 ▁were▁developed▁to▁solve 0.03 ▁type▁of 0.02 s 0.02 ▁transduction 0.001 . -0.4 ▁This▁includes▁speech▁recognition -0.107 s -0.094 ▁are▁a -0.057 , -0.054 ▁text-to-speech▁transformation, -0.05 ▁machine▁translation -0.018 ▁that▁have▁been▁gaining▁popularity -0.018 ,
inputs
0.165
▁Trans
0.128
former
-0.107
s
-0.094 / 2
▁are▁a
0.03 / 2
▁type▁of
0.086
▁ne
0.094
ural
0.092 / 2
▁network▁architecture
-0.018 / 5
▁that▁have▁been▁gaining▁popularity
0.001
.
0.044 / 2
▁Transformer
0.02
s
0.036 / 4
▁were▁developed▁to▁solve
0.107 / 4
▁the▁problem▁of▁sequence
0.02 / 3
▁transduction
-0.018
,
0.197
▁or
0.077
▁ne
0.064
ural
-0.05 / 2
▁machine▁translation
0.064
.
9.1 / 5
That▁means▁any▁task▁that
0.111 / 4
▁transforms▁an▁input
0.522 / 5
▁sequence▁to▁an▁output▁sequence
0.133
.
-0.4 / 4
▁This▁includes▁speech▁recognition
-0.057
,
-0.054 / 9
▁text-to-speech▁transformation,
0.065 / 2
▁etc.
0.182
.
0.049
-5-7-9-11-3-11-10.0407-10.0407base value0.5506540.550654fлюбую(inputs)9.1 That▁means▁any▁task▁that 0.522 ▁sequence▁to▁an▁output▁sequence 0.197 ▁or 0.182 . 0.165 ▁Trans 0.133 . 0.128 former 0.111 ▁transforms▁an▁input 0.107 ▁the▁problem▁of▁sequence 0.094 ural 0.092 ▁network▁architecture 0.086 ▁ne 0.077 ▁ne 0.065 ▁etc. 0.064 ural 0.064 . 0.049 0.044 ▁Transformer 0.036 ▁were▁developed▁to▁solve 0.03 ▁type▁of 0.02 s 0.02 ▁transduction 0.001 . -0.4 ▁This▁includes▁speech▁recognition -0.107 s -0.094 ▁are▁a -0.057 , -0.054 ▁text-to-speech▁transformation, -0.05 ▁machine▁translation -0.018 ▁that▁have▁been▁gaining▁popularity -0.018 ,
inputs
0.165
▁Trans
0.128
former
-0.107
s
-0.094 / 2
▁are▁a
0.03 / 2
▁type▁of
0.086
▁ne
0.094
ural
0.092 / 2
▁network▁architecture
-0.018 / 5
▁that▁have▁been▁gaining▁popularity
0.001
.
0.044 / 2
▁Transformer
0.02
s
0.036 / 4
▁were▁developed▁to▁solve
0.107 / 4
▁the▁problem▁of▁sequence
0.02 / 3
▁transduction
-0.018
,
0.197
▁or
0.077
▁ne
0.064
ural
-0.05 / 2
▁machine▁translation
0.064
.
9.1 / 5
That▁means▁any▁task▁that
0.111 / 4
▁transforms▁an▁input
0.522 / 5
▁sequence▁to▁an▁output▁sequence
0.133
.
-0.4 / 4
▁This▁includes▁speech▁recognition
-0.057
,
-0.054 / 9
▁text-to-speech▁transformation,
0.065 / 2
▁etc.
0.182
.
0.049
-2-6-10-142610-4.85907-4.85907base value2.359492.35949fзадачу(inputs)7.167 That▁means▁any▁task▁that 0.404 ▁machine▁translation 0.343 ▁the▁problem▁of▁sequence 0.158 , 0.124 . 0.116 ▁transduction 0.093 . 0.078 ▁Transformer 0.071 , 0.068 ▁etc. 0.05 ▁were▁developed▁to▁solve 0.043 ▁network▁architecture 0.04 ▁or 0.034 s 0.033 s 0.03 former 0.014 ▁ne 0.001 . -0.429 ▁sequence▁to▁an▁output▁sequence -0.346 ▁text-to-speech▁transformation, -0.284 ▁that▁have▁been▁gaining▁popularity -0.124 ▁transforms▁an▁input -0.097 ▁This▁includes▁speech▁recognition -0.085 . -0.071 ▁are▁a -0.06 ▁ne -0.058 ural -0.056 ▁type▁of -0.022 ▁Trans -0.011 -0.004 ural
inputs
-0.022
▁Trans
0.03
former
0.033
s
-0.071 / 2
▁are▁a
-0.056 / 2
▁type▁of
-0.06
▁ne
-0.058
ural
0.043 / 2
▁network▁architecture
-0.284 / 5
▁that▁have▁been▁gaining▁popularity
-0.085
.
0.078 / 2
▁Transformer
0.034
s
0.05 / 4
▁were▁developed▁to▁solve
0.343 / 4
▁the▁problem▁of▁sequence
0.116 / 3
▁transduction
0.071
,
0.04
▁or
0.014
▁ne
-0.004
ural
0.404 / 2
▁machine▁translation
0.124
.
7.167 / 5
That▁means▁any▁task▁that
-0.124 / 4
▁transforms▁an▁input
-0.429 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
-0.097 / 4
▁This▁includes▁speech▁recognition
0.158
,
-0.346 / 9
▁text-to-speech▁transformation,
0.068 / 2
▁etc.
0.093
.
-0.011
-1-3-513-4.85907-4.85907base value2.359492.35949fзадачу(inputs)7.167 That▁means▁any▁task▁that 0.404 ▁machine▁translation 0.343 ▁the▁problem▁of▁sequence 0.158 , 0.124 . 0.116 ▁transduction 0.093 . 0.078 ▁Transformer 0.071 , 0.068 ▁etc. 0.05 ▁were▁developed▁to▁solve 0.043 ▁network▁architecture 0.04 ▁or 0.034 s 0.033 s 0.03 former 0.014 ▁ne 0.001 . -0.429 ▁sequence▁to▁an▁output▁sequence -0.346 ▁text-to-speech▁transformation, -0.284 ▁that▁have▁been▁gaining▁popularity -0.124 ▁transforms▁an▁input -0.097 ▁This▁includes▁speech▁recognition -0.085 . -0.071 ▁are▁a -0.06 ▁ne -0.058 ural -0.056 ▁type▁of -0.022 ▁Trans -0.011 -0.004 ural
inputs
-0.022
▁Trans
0.03
former
0.033
s
-0.071 / 2
▁are▁a
-0.056 / 2
▁type▁of
-0.06
▁ne
-0.058
ural
0.043 / 2
▁network▁architecture
-0.284 / 5
▁that▁have▁been▁gaining▁popularity
-0.085
.
0.078 / 2
▁Transformer
0.034
s
0.05 / 4
▁were▁developed▁to▁solve
0.343 / 4
▁the▁problem▁of▁sequence
0.116 / 3
▁transduction
0.071
,
0.04
▁or
0.014
▁ne
-0.004
ural
0.404 / 2
▁machine▁translation
0.124
.
7.167 / 5
That▁means▁any▁task▁that
-0.124 / 4
▁transforms▁an▁input
-0.429 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
-0.097 / 4
▁This▁includes▁speech▁recognition
0.158
,
-0.346 / 9
▁text-to-speech▁transformation,
0.068 / 2
▁etc.
0.093
.
-0.011
-2-6-10-142610-0.957177-0.957177base value1.726971.72697f,(inputs)2.129 That▁means▁any▁task▁that 0.526 ▁transforms▁an▁input 0.129 , 0.079 . 0.076 . 0.067 . 0.051 . 0.036 ▁that▁have▁been▁gaining▁popularity 0.034 ▁text-to-speech▁transformation, 0.017 ▁or 0.011 ▁type▁of 0.01 ▁etc. 0.008 ▁ne 0.007 , 0.007 ural 0.005 ▁ne 0.002 ural 0.001 ▁Trans -0.111 ▁This▁includes▁speech▁recognition -0.093 ▁machine▁translation -0.076 ▁the▁problem▁of▁sequence -0.064 ▁sequence▁to▁an▁output▁sequence -0.033 ▁network▁architecture -0.033 ▁Transformer -0.029 s -0.029 s -0.012 ▁are▁a -0.012 ▁were▁developed▁to▁solve -0.009 ▁transduction -0.006 former -0.004
inputs
0.001
▁Trans
-0.006
former
-0.029
s
-0.012 / 2
▁are▁a
0.011 / 2
▁type▁of
0.008
▁ne
0.007
ural
-0.033 / 2
▁network▁architecture
0.036 / 5
▁that▁have▁been▁gaining▁popularity
0.076
.
-0.033 / 2
▁Transformer
-0.029
s
-0.012 / 4
▁were▁developed▁to▁solve
-0.076 / 4
▁the▁problem▁of▁sequence
-0.009 / 3
▁transduction
0.007
,
0.017
▁or
0.005
▁ne
0.002
ural
-0.093 / 2
▁machine▁translation
0.079
.
2.129 / 5
That▁means▁any▁task▁that
0.526 / 4
▁transforms▁an▁input
-0.064 / 5
▁sequence▁to▁an▁output▁sequence
0.067
.
-0.111 / 4
▁This▁includes▁speech▁recognition
0.129
,
0.034 / 9
▁text-to-speech▁transformation,
0.01 / 2
▁etc.
0.051
.
-0.004
0-112-0.957177-0.957177base value1.726971.72697f,(inputs)2.129 That▁means▁any▁task▁that 0.526 ▁transforms▁an▁input 0.129 , 0.079 . 0.076 . 0.067 . 0.051 . 0.036 ▁that▁have▁been▁gaining▁popularity 0.034 ▁text-to-speech▁transformation, 0.017 ▁or 0.011 ▁type▁of 0.01 ▁etc. 0.008 ▁ne 0.007 , 0.007 ural 0.005 ▁ne 0.002 ural 0.001 ▁Trans -0.111 ▁This▁includes▁speech▁recognition -0.093 ▁machine▁translation -0.076 ▁the▁problem▁of▁sequence -0.064 ▁sequence▁to▁an▁output▁sequence -0.033 ▁network▁architecture -0.033 ▁Transformer -0.029 s -0.029 s -0.012 ▁are▁a -0.012 ▁were▁developed▁to▁solve -0.009 ▁transduction -0.006 former -0.004
inputs
0.001
▁Trans
-0.006
former
-0.029
s
-0.012 / 2
▁are▁a
0.011 / 2
▁type▁of
0.008
▁ne
0.007
ural
-0.033 / 2
▁network▁architecture
0.036 / 5
▁that▁have▁been▁gaining▁popularity
0.076
.
-0.033 / 2
▁Transformer
-0.029
s
-0.012 / 4
▁were▁developed▁to▁solve
-0.076 / 4
▁the▁problem▁of▁sequence
-0.009 / 3
▁transduction
0.007
,
0.017
▁or
0.005
▁ne
0.002
ural
-0.093 / 2
▁machine▁translation
0.079
.
2.129 / 5
That▁means▁any▁task▁that
0.526 / 4
▁transforms▁an▁input
-0.064 / 5
▁sequence▁to▁an▁output▁sequence
0.067
.
-0.111 / 4
▁This▁includes▁speech▁recognition
0.129
,
0.034 / 9
▁text-to-speech▁transformation,
0.01 / 2
▁etc.
0.051
.
-0.004
-2-6-10-142610-1.29524-1.29524base value0.3791190.379119fкоторая(inputs)2.032 That▁means▁any▁task▁that 0.096 ▁text-to-speech▁transformation, 0.072 ▁that▁have▁been▁gaining▁popularity 0.061 ▁etc. 0.051 . 0.039 . 0.034 ▁Trans 0.034 . 0.027 ▁or 0.026 0.024 ▁machine▁translation 0.021 ▁were▁developed▁to▁solve 0.016 , 0.01 ural 0.01 , 0.007 ▁ne 0.007 ▁transduction 0.006 ▁ne 0.005 ural 0.001 former -0.633 ▁This▁includes▁speech▁recognition -0.061 ▁transforms▁an▁input -0.04 . -0.031 ▁type▁of -0.03 ▁are▁a -0.023 ▁the▁problem▁of▁sequence -0.023 ▁sequence▁to▁an▁output▁sequence -0.019 s -0.017 ▁Transformer -0.017 s -0.007 ▁network▁architecture
inputs
0.034
▁Trans
0.001
former
-0.019
s
-0.03 / 2
▁are▁a
-0.031 / 2
▁type▁of
0.006
▁ne
0.005
ural
-0.007 / 2
▁network▁architecture
0.072 / 5
▁that▁have▁been▁gaining▁popularity
0.034
.
-0.017 / 2
▁Transformer
-0.017
s
0.021 / 4
▁were▁developed▁to▁solve
-0.023 / 4
▁the▁problem▁of▁sequence
0.007 / 3
▁transduction
0.01
,
0.027
▁or
0.007
▁ne
0.01
ural
0.024 / 2
▁machine▁translation
0.051
.
2.032 / 5
That▁means▁any▁task▁that
-0.061 / 4
▁transforms▁an▁input
-0.023 / 5
▁sequence▁to▁an▁output▁sequence
-0.04
.
-0.633 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.096 / 9
▁text-to-speech▁transformation,
0.061 / 2
▁etc.
0.039
.
0.026
-0-1-21-1.29524-1.29524base value0.3791190.379119fкоторая(inputs)2.032 That▁means▁any▁task▁that 0.096 ▁text-to-speech▁transformation, 0.072 ▁that▁have▁been▁gaining▁popularity 0.061 ▁etc. 0.051 . 0.039 . 0.034 ▁Trans 0.034 . 0.027 ▁or 0.026 0.024 ▁machine▁translation 0.021 ▁were▁developed▁to▁solve 0.016 , 0.01 ural 0.01 , 0.007 ▁ne 0.007 ▁transduction 0.006 ▁ne 0.005 ural 0.001 former -0.633 ▁This▁includes▁speech▁recognition -0.061 ▁transforms▁an▁input -0.04 . -0.031 ▁type▁of -0.03 ▁are▁a -0.023 ▁the▁problem▁of▁sequence -0.023 ▁sequence▁to▁an▁output▁sequence -0.019 s -0.017 ▁Transformer -0.017 s -0.007 ▁network▁architecture
inputs
0.034
▁Trans
0.001
former
-0.019
s
-0.03 / 2
▁are▁a
-0.031 / 2
▁type▁of
0.006
▁ne
0.005
ural
-0.007 / 2
▁network▁architecture
0.072 / 5
▁that▁have▁been▁gaining▁popularity
0.034
.
-0.017 / 2
▁Transformer
-0.017
s
0.021 / 4
▁were▁developed▁to▁solve
-0.023 / 4
▁the▁problem▁of▁sequence
0.007 / 3
▁transduction
0.01
,
0.027
▁or
0.007
▁ne
0.01
ural
0.024 / 2
▁machine▁translation
0.051
.
2.032 / 5
That▁means▁any▁task▁that
-0.061 / 4
▁transforms▁an▁input
-0.023 / 5
▁sequence▁to▁an▁output▁sequence
-0.04
.
-0.633 / 4
▁This▁includes▁speech▁recognition
0.016
,
0.096 / 9
▁text-to-speech▁transformation,
0.061 / 2
▁etc.
0.039
.
0.026
-2-6-10-142610-7.61749-7.61749base value0.8376650.837665fпре(inputs)5.813 ▁transforms▁an▁input 2.834 That▁means▁any▁task▁that 0.318 ▁sequence▁to▁an▁output▁sequence 0.233 ▁that▁have▁been▁gaining▁popularity 0.191 ▁text-to-speech▁transformation, 0.155 ▁Trans 0.101 former 0.067 ▁machine▁translation 0.064 ▁Transformer 0.042 s 0.031 ▁network▁architecture 0.027 s 0.024 ▁transduction 0.024 ▁are▁a 0.022 ▁ne 0.019 ural 0.016 , 0.008 . 0.002 ▁type▁of -0.719 ▁This▁includes▁speech▁recognition -0.199 ▁etc. -0.183 . -0.106 . -0.089 ▁the▁problem▁of▁sequence -0.062 ▁were▁developed▁to▁solve -0.058 ▁or -0.057 . -0.022 ▁ne -0.017 ural -0.013 -0.012 ,
inputs
0.155
▁Trans
0.101
former
0.027
s
0.024 / 2
▁are▁a
0.002 / 2
▁type▁of
0.022
▁ne
0.019
ural
0.031 / 2
▁network▁architecture
0.233 / 5
▁that▁have▁been▁gaining▁popularity
0.008
.
0.064 / 2
▁Transformer
0.042
s
-0.062 / 4
▁were▁developed▁to▁solve
-0.089 / 4
▁the▁problem▁of▁sequence
0.024 / 3
▁transduction
0.016
,
-0.058
▁or
-0.022
▁ne
-0.017
ural
0.067 / 2
▁machine▁translation
-0.057
.
2.834 / 5
That▁means▁any▁task▁that
5.813 / 4
▁transforms▁an▁input
0.318 / 5
▁sequence▁to▁an▁output▁sequence
-0.106
.
-0.719 / 4
▁This▁includes▁speech▁recognition
-0.012
,
0.191 / 9
▁text-to-speech▁transformation,
-0.199 / 2
▁etc.
-0.183
.
-0.013
-3-5-7-9-11-7.61749-7.61749base value0.8376650.837665fпре(inputs)5.813 ▁transforms▁an▁input 2.834 That▁means▁any▁task▁that 0.318 ▁sequence▁to▁an▁output▁sequence 0.233 ▁that▁have▁been▁gaining▁popularity 0.191 ▁text-to-speech▁transformation, 0.155 ▁Trans 0.101 former 0.067 ▁machine▁translation 0.064 ▁Transformer 0.042 s 0.031 ▁network▁architecture 0.027 s 0.024 ▁transduction 0.024 ▁are▁a 0.022 ▁ne 0.019 ural 0.016 , 0.008 . 0.002 ▁type▁of -0.719 ▁This▁includes▁speech▁recognition -0.199 ▁etc. -0.183 . -0.106 . -0.089 ▁the▁problem▁of▁sequence -0.062 ▁were▁developed▁to▁solve -0.058 ▁or -0.057 . -0.022 ▁ne -0.017 ural -0.013 -0.012 ,
inputs
0.155
▁Trans
0.101
former
0.027
s
0.024 / 2
▁are▁a
0.002 / 2
▁type▁of
0.022
▁ne
0.019
ural
0.031 / 2
▁network▁architecture
0.233 / 5
▁that▁have▁been▁gaining▁popularity
0.008
.
0.064 / 2
▁Transformer
0.042
s
-0.062 / 4
▁were▁developed▁to▁solve
-0.089 / 4
▁the▁problem▁of▁sequence
0.024 / 3
▁transduction
0.016
,
-0.058
▁or
-0.022
▁ne
-0.017
ural
0.067 / 2
▁machine▁translation
-0.057
.
2.834 / 5
That▁means▁any▁task▁that
5.813 / 4
▁transforms▁an▁input
0.318 / 5
▁sequence▁to▁an▁output▁sequence
-0.106
.
-0.719 / 4
▁This▁includes▁speech▁recognition
-0.012
,
0.191 / 9
▁text-to-speech▁transformation,
-0.199 / 2
▁etc.
-0.183
.
-0.013
-2-6-10-142610-2.80911-2.80911base value4.321624.32162fобраз(inputs)3.351 ▁transforms▁an▁input 0.896 ▁text-to-speech▁transformation, 0.57 That▁means▁any▁task▁that 0.435 . 0.317 ▁Trans 0.299 ▁Transformer 0.271 ▁sequence▁to▁an▁output▁sequence 0.242 ▁etc. 0.196 ▁transduction 0.172 former 0.151 , 0.111 s 0.101 . 0.092 ▁machine▁translation 0.089 ▁the▁problem▁of▁sequence 0.061 . 0.057 . 0.037 ural 0.037 ▁type▁of 0.027 ▁were▁developed▁to▁solve 0.026 ▁are▁a 0.025 ▁ne 0.025 0.021 ▁ne 0.019 ural 0.0 ▁or -0.168 ▁that▁have▁been▁gaining▁popularity -0.143 s -0.118 ▁This▁includes▁speech▁recognition -0.049 ▁network▁architecture -0.018 ,
inputs
0.317
▁Trans
0.172
former
-0.143
s
0.026 / 2
▁are▁a
0.037 / 2
▁type▁of
0.021
▁ne
0.019
ural
-0.049 / 2
▁network▁architecture
-0.168 / 5
▁that▁have▁been▁gaining▁popularity
0.057
.
0.299 / 2
▁Transformer
0.111
s
0.027 / 4
▁were▁developed▁to▁solve
0.089 / 4
▁the▁problem▁of▁sequence
0.196 / 3
▁transduction
0.151
,
0.0
▁or
0.025
▁ne
0.037
ural
0.092 / 2
▁machine▁translation
0.101
.
0.57 / 5
That▁means▁any▁task▁that
3.351 / 4
▁transforms▁an▁input
0.271 / 5
▁sequence▁to▁an▁output▁sequence
0.061
.
-0.118 / 4
▁This▁includes▁speech▁recognition
-0.018
,
0.896 / 9
▁text-to-speech▁transformation,
0.242 / 2
▁etc.
0.435
.
0.025
10-1-2-3234-2.80911-2.80911base value4.321624.32162fобраз(inputs)3.351 ▁transforms▁an▁input 0.896 ▁text-to-speech▁transformation, 0.57 That▁means▁any▁task▁that 0.435 . 0.317 ▁Trans 0.299 ▁Transformer 0.271 ▁sequence▁to▁an▁output▁sequence 0.242 ▁etc. 0.196 ▁transduction 0.172 former 0.151 , 0.111 s 0.101 . 0.092 ▁machine▁translation 0.089 ▁the▁problem▁of▁sequence 0.061 . 0.057 . 0.037 ural 0.037 ▁type▁of 0.027 ▁were▁developed▁to▁solve 0.026 ▁are▁a 0.025 ▁ne 0.025 0.021 ▁ne 0.019 ural 0.0 ▁or -0.168 ▁that▁have▁been▁gaining▁popularity -0.143 s -0.118 ▁This▁includes▁speech▁recognition -0.049 ▁network▁architecture -0.018 ,
inputs
0.317
▁Trans
0.172
former
-0.143
s
0.026 / 2
▁are▁a
0.037 / 2
▁type▁of
0.021
▁ne
0.019
ural
-0.049 / 2
▁network▁architecture
-0.168 / 5
▁that▁have▁been▁gaining▁popularity
0.057
.
0.299 / 2
▁Transformer
0.111
s
0.027 / 4
▁were▁developed▁to▁solve
0.089 / 4
▁the▁problem▁of▁sequence
0.196 / 3
▁transduction
0.151
,
0.0
▁or
0.025
▁ne
0.037
ural
0.092 / 2
▁machine▁translation
0.101
.
0.57 / 5
That▁means▁any▁task▁that
3.351 / 4
▁transforms▁an▁input
0.271 / 5
▁sequence▁to▁an▁output▁sequence
0.061
.
-0.118 / 4
▁This▁includes▁speech▁recognition
-0.018
,
0.896 / 9
▁text-to-speech▁transformation,
0.242 / 2
▁etc.
0.435
.
0.025
-2-6-10-142610-2.06007-2.06007base value2.125882.12588fует(inputs)2.115 ▁transforms▁an▁input 1.901 That▁means▁any▁task▁that 0.738 ▁This▁includes▁speech▁recognition 0.109 ▁machine▁translation 0.099 ▁Transformer 0.09 ▁transduction 0.085 ▁Trans 0.05 s 0.049 ▁network▁architecture 0.037 , 0.014 s 0.004 former -0.197 ▁sequence▁to▁an▁output▁sequence -0.126 . -0.108 . -0.078 , -0.078 ▁etc. -0.07 ▁that▁have▁been▁gaining▁popularity -0.066 ▁are▁a -0.064 ▁type▁of -0.064 -0.053 ▁text-to-speech▁transformation, -0.045 . -0.034 ural -0.029 ▁ne -0.021 ural -0.021 ▁ne -0.02 ▁the▁problem▁of▁sequence -0.015 ▁were▁developed▁to▁solve -0.012 . -0.004 ▁or
inputs
0.085
▁Trans
0.004
former
0.014
s
-0.066 / 2
▁are▁a
-0.064 / 2
▁type▁of
-0.021
▁ne
-0.021
ural
0.049 / 2
▁network▁architecture
-0.07 / 5
▁that▁have▁been▁gaining▁popularity
-0.126
.
0.099 / 2
▁Transformer
0.05
s
-0.015 / 4
▁were▁developed▁to▁solve
-0.02 / 4
▁the▁problem▁of▁sequence
0.09 / 3
▁transduction
0.037
,
-0.004
▁or
-0.029
▁ne
-0.034
ural
0.109 / 2
▁machine▁translation
-0.045
.
1.901 / 5
That▁means▁any▁task▁that
2.115 / 4
▁transforms▁an▁input
-0.197 / 5
▁sequence▁to▁an▁output▁sequence
-0.012
.
0.738 / 4
▁This▁includes▁speech▁recognition
-0.078
,
-0.053 / 9
▁text-to-speech▁transformation,
-0.078 / 2
▁etc.
-0.108
.
-0.064
0-1-2-3123-2.06007-2.06007base value2.125882.12588fует(inputs)2.115 ▁transforms▁an▁input 1.901 That▁means▁any▁task▁that 0.738 ▁This▁includes▁speech▁recognition 0.109 ▁machine▁translation 0.099 ▁Transformer 0.09 ▁transduction 0.085 ▁Trans 0.05 s 0.049 ▁network▁architecture 0.037 , 0.014 s 0.004 former -0.197 ▁sequence▁to▁an▁output▁sequence -0.126 . -0.108 . -0.078 , -0.078 ▁etc. -0.07 ▁that▁have▁been▁gaining▁popularity -0.066 ▁are▁a -0.064 ▁type▁of -0.064 -0.053 ▁text-to-speech▁transformation, -0.045 . -0.034 ural -0.029 ▁ne -0.021 ural -0.021 ▁ne -0.02 ▁the▁problem▁of▁sequence -0.015 ▁were▁developed▁to▁solve -0.012 . -0.004 ▁or
inputs
0.085
▁Trans
0.004
former
0.014
s
-0.066 / 2
▁are▁a
-0.064 / 2
▁type▁of
-0.021
▁ne
-0.021
ural
0.049 / 2
▁network▁architecture
-0.07 / 5
▁that▁have▁been▁gaining▁popularity
-0.126
.
0.099 / 2
▁Transformer
0.05
s
-0.015 / 4
▁were▁developed▁to▁solve
-0.02 / 4
▁the▁problem▁of▁sequence
0.09 / 3
▁transduction
0.037
,
-0.004
▁or
-0.029
▁ne
-0.034
ural
0.109 / 2
▁machine▁translation
-0.045
.
1.901 / 5
That▁means▁any▁task▁that
2.115 / 4
▁transforms▁an▁input
-0.197 / 5
▁sequence▁to▁an▁output▁sequence
-0.012
.
0.738 / 4
▁This▁includes▁speech▁recognition
-0.078
,
-0.053 / 9
▁text-to-speech▁transformation,
-0.078 / 2
▁etc.
-0.108
.
-0.064
-2-6-10-142610-6.26102-6.26102base value0.03749320.0374932fпо(inputs)3.413 ▁sequence▁to▁an▁output▁sequence 1.227 ▁transforms▁an▁input 1.114 ▁the▁problem▁of▁sequence 0.479 That▁means▁any▁task▁that 0.287 ▁transduction 0.152 ▁machine▁translation 0.117 , 0.096 . 0.052 . 0.042 . 0.039 . 0.037 ▁or 0.036 ▁that▁have▁been▁gaining▁popularity 0.021 ▁etc. 0.004 ▁ne 0.0 ▁ne -0.377 ▁This▁includes▁speech▁recognition -0.101 ▁text-to-speech▁transformation, -0.058 ▁were▁developed▁to▁solve -0.056 , -0.043 s -0.041 ▁are▁a -0.037 s -0.037 ▁Transformer -0.022 former -0.018 ▁type▁of -0.009 ▁network▁architecture -0.008 ▁Trans -0.005 ural -0.005 ural -0.002
inputs
-0.008
▁Trans
-0.022
former
-0.037
s
-0.041 / 2
▁are▁a
-0.018 / 2
▁type▁of
0.0
▁ne
-0.005
ural
-0.009 / 2
▁network▁architecture
0.036 / 5
▁that▁have▁been▁gaining▁popularity
0.039
.
-0.037 / 2
▁Transformer
-0.043
s
-0.058 / 4
▁were▁developed▁to▁solve
1.114 / 4
▁the▁problem▁of▁sequence
0.287 / 3
▁transduction
0.117
,
0.037
▁or
0.004
▁ne
-0.005
ural
0.152 / 2
▁machine▁translation
0.052
.
0.479 / 5
That▁means▁any▁task▁that
1.227 / 4
▁transforms▁an▁input
3.413 / 5
▁sequence▁to▁an▁output▁sequence
0.096
.
-0.377 / 4
▁This▁includes▁speech▁recognition
-0.056
,
-0.101 / 9
▁text-to-speech▁transformation,
0.021 / 2
▁etc.
0.042
.
-0.002
-3-4-5-6-7-2-10-6.26102-6.26102base value0.03749320.0374932fпо(inputs)3.413 ▁sequence▁to▁an▁output▁sequence 1.227 ▁transforms▁an▁input 1.114 ▁the▁problem▁of▁sequence 0.479 That▁means▁any▁task▁that 0.287 ▁transduction 0.152 ▁machine▁translation 0.117 , 0.096 . 0.052 . 0.042 . 0.039 . 0.037 ▁or 0.036 ▁that▁have▁been▁gaining▁popularity 0.021 ▁etc. 0.004 ▁ne 0.0 ▁ne -0.377 ▁This▁includes▁speech▁recognition -0.101 ▁text-to-speech▁transformation, -0.058 ▁were▁developed▁to▁solve -0.056 , -0.043 s -0.041 ▁are▁a -0.037 s -0.037 ▁Transformer -0.022 former -0.018 ▁type▁of -0.009 ▁network▁architecture -0.008 ▁Trans -0.005 ural -0.005 ural -0.002
inputs
-0.008
▁Trans
-0.022
former
-0.037
s
-0.041 / 2
▁are▁a
-0.018 / 2
▁type▁of
0.0
▁ne
-0.005
ural
-0.009 / 2
▁network▁architecture
0.036 / 5
▁that▁have▁been▁gaining▁popularity
0.039
.
-0.037 / 2
▁Transformer
-0.043
s
-0.058 / 4
▁were▁developed▁to▁solve
1.114 / 4
▁the▁problem▁of▁sequence
0.287 / 3
▁transduction
0.117
,
0.037
▁or
0.004
▁ne
-0.005
ural
0.152 / 2
▁machine▁translation
0.052
.
0.479 / 5
That▁means▁any▁task▁that
1.227 / 4
▁transforms▁an▁input
3.413 / 5
▁sequence▁to▁an▁output▁sequence
0.096
.
-0.377 / 4
▁This▁includes▁speech▁recognition
-0.056
,
-0.101 / 9
▁text-to-speech▁transformation,
0.021 / 2
▁etc.
0.042
.
-0.002
-2-6-10-142610-3.43642-3.43642base value3.001513.00151fследовательность(inputs)4.969 ▁sequence▁to▁an▁output▁sequence 2.856 ▁the▁problem▁of▁sequence 0.167 ▁network▁architecture 0.13 ▁machine▁translation 0.085 , 0.077 former 0.052 ▁Transformer 0.045 ▁were▁developed▁to▁solve 0.044 ▁etc. 0.04 ▁or 0.019 ural 0.014 ural 0.013 ▁ne 0.013 ▁ne 0.003 . 0.003 0.001 . 0.0 , -0.708 ▁transforms▁an▁input -0.538 That▁means▁any▁task▁that -0.4 ▁This▁includes▁speech▁recognition -0.201 ▁text-to-speech▁transformation, -0.053 ▁Trans -0.043 ▁transduction -0.043 ▁that▁have▁been▁gaining▁popularity -0.034 . -0.032 . -0.024 ▁are▁a -0.016 s -0.002 ▁type▁of -0.001 s
inputs
-0.053
▁Trans
0.077
former
-0.016
s
-0.024 / 2
▁are▁a
-0.002 / 2
▁type▁of
0.013
▁ne
0.014
ural
0.167 / 2
▁network▁architecture
-0.043 / 5
▁that▁have▁been▁gaining▁popularity
-0.032
.
0.052 / 2
▁Transformer
-0.001
s
0.045 / 4
▁were▁developed▁to▁solve
2.856 / 4
▁the▁problem▁of▁sequence
-0.043 / 3
▁transduction
0.0
,
0.04
▁or
0.013
▁ne
0.019
ural
0.13 / 2
▁machine▁translation
0.003
.
-0.538 / 5
That▁means▁any▁task▁that
-0.708 / 4
▁transforms▁an▁input
4.969 / 5
▁sequence▁to▁an▁output▁sequence
-0.034
.
-0.4 / 4
▁This▁includes▁speech▁recognition
0.085
,
-0.201 / 9
▁text-to-speech▁transformation,
0.044 / 2
▁etc.
0.001
.
0.003
-0-2-424-3.43642-3.43642base value3.001513.00151fследовательность(inputs)4.969 ▁sequence▁to▁an▁output▁sequence 2.856 ▁the▁problem▁of▁sequence 0.167 ▁network▁architecture 0.13 ▁machine▁translation 0.085 , 0.077 former 0.052 ▁Transformer 0.045 ▁were▁developed▁to▁solve 0.044 ▁etc. 0.04 ▁or 0.019 ural 0.014 ural 0.013 ▁ne 0.013 ▁ne 0.003 . 0.003 0.001 . 0.0 , -0.708 ▁transforms▁an▁input -0.538 That▁means▁any▁task▁that -0.4 ▁This▁includes▁speech▁recognition -0.201 ▁text-to-speech▁transformation, -0.053 ▁Trans -0.043 ▁transduction -0.043 ▁that▁have▁been▁gaining▁popularity -0.034 . -0.032 . -0.024 ▁are▁a -0.016 s -0.002 ▁type▁of -0.001 s
inputs
-0.053
▁Trans
0.077
former
-0.016
s
-0.024 / 2
▁are▁a
-0.002 / 2
▁type▁of
0.013
▁ne
0.014
ural
0.167 / 2
▁network▁architecture
-0.043 / 5
▁that▁have▁been▁gaining▁popularity
-0.032
.
0.052 / 2
▁Transformer
-0.001
s
0.045 / 4
▁were▁developed▁to▁solve
2.856 / 4
▁the▁problem▁of▁sequence
-0.043 / 3
▁transduction
0.0
,
0.04
▁or
0.013
▁ne
0.019
ural
0.13 / 2
▁machine▁translation
0.003
.
-0.538 / 5
That▁means▁any▁task▁that
-0.708 / 4
▁transforms▁an▁input
4.969 / 5
▁sequence▁to▁an▁output▁sequence
-0.034
.
-0.4 / 4
▁This▁includes▁speech▁recognition
0.085
,
-0.201 / 9
▁text-to-speech▁transformation,
0.044 / 2
▁etc.
0.001
.
0.003
-2-6-10-142610-9.80305-9.80305base value1.18571.1857fввода(inputs)5.515 ▁transforms▁an▁input 3.913 ▁sequence▁to▁an▁output▁sequence 0.738 ▁the▁problem▁of▁sequence 0.574 That▁means▁any▁task▁that 0.299 . 0.27 ▁machine▁translation 0.178 ▁transduction 0.127 . 0.111 , 0.096 ▁or 0.096 . 0.089 ▁were▁developed▁to▁solve 0.08 ▁etc. 0.044 . 0.029 ▁Transformer 0.027 s 0.02 0.001 ▁type▁of -0.358 ▁This▁includes▁speech▁recognition -0.333 ▁text-to-speech▁transformation, -0.109 ▁are▁a -0.061 ▁that▁have▁been▁gaining▁popularity -0.057 ▁ne -0.054 ural -0.048 ▁ne -0.047 ural -0.043 , -0.041 ▁network▁architecture -0.04 s -0.028 former -0.001 ▁Trans
inputs
-0.001
▁Trans
-0.028
former
-0.04
s
-0.109 / 2
▁are▁a
0.001 / 2
▁type▁of
-0.048
▁ne
-0.047
ural
-0.041 / 2
▁network▁architecture
-0.061 / 5
▁that▁have▁been▁gaining▁popularity
0.044
.
0.029 / 2
▁Transformer
0.027
s
0.089 / 4
▁were▁developed▁to▁solve
0.738 / 4
▁the▁problem▁of▁sequence
0.178 / 3
▁transduction
0.111
,
0.096
▁or
-0.057
▁ne
-0.054
ural
0.27 / 2
▁machine▁translation
0.096
.
0.574 / 5
That▁means▁any▁task▁that
5.515 / 4
▁transforms▁an▁input
3.913 / 5
▁sequence▁to▁an▁output▁sequence
0.127
.
-0.358 / 4
▁This▁includes▁speech▁recognition
-0.043
,
-0.333 / 9
▁text-to-speech▁transformation,
0.08 / 2
▁etc.
0.299
.
0.02
-4-6-8-10-202-9.80305-9.80305base value1.18571.1857fввода(inputs)5.515 ▁transforms▁an▁input 3.913 ▁sequence▁to▁an▁output▁sequence 0.738 ▁the▁problem▁of▁sequence 0.574 That▁means▁any▁task▁that 0.299 . 0.27 ▁machine▁translation 0.178 ▁transduction 0.127 . 0.111 , 0.096 ▁or 0.096 . 0.089 ▁were▁developed▁to▁solve 0.08 ▁etc. 0.044 . 0.029 ▁Transformer 0.027 s 0.02 0.001 ▁type▁of -0.358 ▁This▁includes▁speech▁recognition -0.333 ▁text-to-speech▁transformation, -0.109 ▁are▁a -0.061 ▁that▁have▁been▁gaining▁popularity -0.057 ▁ne -0.054 ural -0.048 ▁ne -0.047 ural -0.043 , -0.041 ▁network▁architecture -0.04 s -0.028 former -0.001 ▁Trans
inputs
-0.001
▁Trans
-0.028
former
-0.04
s
-0.109 / 2
▁are▁a
0.001 / 2
▁type▁of
-0.048
▁ne
-0.047
ural
-0.041 / 2
▁network▁architecture
-0.061 / 5
▁that▁have▁been▁gaining▁popularity
0.044
.
0.029 / 2
▁Transformer
0.027
s
0.089 / 4
▁were▁developed▁to▁solve
0.738 / 4
▁the▁problem▁of▁sequence
0.178 / 3
▁transduction
0.111
,
0.096
▁or
-0.057
▁ne
-0.054
ural
0.27 / 2
▁machine▁translation
0.096
.
0.574 / 5
That▁means▁any▁task▁that
5.515 / 4
▁transforms▁an▁input
3.913 / 5
▁sequence▁to▁an▁output▁sequence
0.127
.
-0.358 / 4
▁This▁includes▁speech▁recognition
-0.043
,
-0.333 / 9
▁text-to-speech▁transformation,
0.08 / 2
▁etc.
0.299
.
0.02
-2-6-10-142610-1.80658-1.80658base value0.4530070.453007fв(inputs)1.644 ▁sequence▁to▁an▁output▁sequence 0.179 ▁were▁developed▁to▁solve 0.145 That▁means▁any▁task▁that 0.106 . 0.1 ▁text-to-speech▁transformation, 0.059 ▁that▁have▁been▁gaining▁popularity 0.056 ▁the▁problem▁of▁sequence 0.052 0.05 ▁network▁architecture 0.039 ▁or 0.031 ▁type▁of 0.03 ▁Trans 0.019 ▁etc. 0.018 . 0.011 former 0.011 . 0.01 ▁are▁a 0.008 s 0.007 . 0.005 ural 0.004 ▁Transformer 0.002 ▁ne 0.002 s 0.001 ▁ne 0.001 ural -0.1 ▁machine▁translation -0.089 ▁transduction -0.043 ▁This▁includes▁speech▁recognition -0.037 ▁transforms▁an▁input -0.036 , -0.023 ,
inputs
0.03
▁Trans
0.011
former
0.002
s
0.01 / 2
▁are▁a
0.031 / 2
▁type▁of
0.001
▁ne
0.001
ural
0.05 / 2
▁network▁architecture
0.059 / 5
▁that▁have▁been▁gaining▁popularity
0.018
.
0.004 / 2
▁Transformer
0.008
s
0.179 / 4
▁were▁developed▁to▁solve
0.056 / 4
▁the▁problem▁of▁sequence
-0.089 / 3
▁transduction
-0.023
,
0.039
▁or
0.002
▁ne
0.005
ural
-0.1 / 2
▁machine▁translation
0.011
.
0.145 / 5
That▁means▁any▁task▁that
-0.037 / 4
▁transforms▁an▁input
1.644 / 5
▁sequence▁to▁an▁output▁sequence
0.007
.
-0.043 / 4
▁This▁includes▁speech▁recognition
-0.036
,
0.1 / 9
▁text-to-speech▁transformation,
0.019 / 2
▁etc.
0.106
.
0.052
-1-20-1.80658-1.80658base value0.4530070.453007fв(inputs)1.644 ▁sequence▁to▁an▁output▁sequence 0.179 ▁were▁developed▁to▁solve 0.145 That▁means▁any▁task▁that 0.106 . 0.1 ▁text-to-speech▁transformation, 0.059 ▁that▁have▁been▁gaining▁popularity 0.056 ▁the▁problem▁of▁sequence 0.052 0.05 ▁network▁architecture 0.039 ▁or 0.031 ▁type▁of 0.03 ▁Trans 0.019 ▁etc. 0.018 . 0.011 former 0.011 . 0.01 ▁are▁a 0.008 s 0.007 . 0.005 ural 0.004 ▁Transformer 0.002 ▁ne 0.002 s 0.001 ▁ne 0.001 ural -0.1 ▁machine▁translation -0.089 ▁transduction -0.043 ▁This▁includes▁speech▁recognition -0.037 ▁transforms▁an▁input -0.036 , -0.023 ,
inputs
0.03
▁Trans
0.011
former
0.002
s
0.01 / 2
▁are▁a
0.031 / 2
▁type▁of
0.001
▁ne
0.001
ural
0.05 / 2
▁network▁architecture
0.059 / 5
▁that▁have▁been▁gaining▁popularity
0.018
.
0.004 / 2
▁Transformer
0.008
s
0.179 / 4
▁were▁developed▁to▁solve
0.056 / 4
▁the▁problem▁of▁sequence
-0.089 / 3
▁transduction
-0.023
,
0.039
▁or
0.002
▁ne
0.005
ural
-0.1 / 2
▁machine▁translation
0.011
.
0.145 / 5
That▁means▁any▁task▁that
-0.037 / 4
▁transforms▁an▁input
1.644 / 5
▁sequence▁to▁an▁output▁sequence
0.007
.
-0.043 / 4
▁This▁includes▁speech▁recognition
-0.036
,
0.1 / 9
▁text-to-speech▁transformation,
0.019 / 2
▁etc.
0.106
.
0.052
-2-6-10-142610-10.1725-10.1725base value0.3960460.396046fпо(inputs)6.222 ▁sequence▁to▁an▁output▁sequence 0.905 ▁the▁problem▁of▁sequence 0.851 ▁transforms▁an▁input 0.626 That▁means▁any▁task▁that 0.456 ▁This▁includes▁speech▁recognition 0.455 ▁text-to-speech▁transformation, 0.39 ▁that▁have▁been▁gaining▁popularity 0.263 ▁transduction 0.204 ▁were▁developed▁to▁solve 0.12 ▁are▁a 0.114 , 0.095 . 0.074 ▁network▁architecture 0.047 ▁type▁of 0.039 ▁ne 0.028 ural 0.02 ▁Trans 0.019 ▁ne 0.017 ural 0.017 ▁or 0.01 . 0.005 s 0.004 0.001 former -0.188 . -0.114 . -0.036 s -0.034 ▁Transformer -0.024 , -0.013 ▁etc. -0.004 ▁machine▁translation
inputs
0.02
▁Trans
0.001
former
0.005
s
0.12 / 2
▁are▁a
0.047 / 2
▁type▁of
0.019
▁ne
0.017
ural
0.074 / 2
▁network▁architecture
0.39 / 5
▁that▁have▁been▁gaining▁popularity
0.095
.
-0.034 / 2
▁Transformer
-0.036
s
0.204 / 4
▁were▁developed▁to▁solve
0.905 / 4
▁the▁problem▁of▁sequence
0.263 / 3
▁transduction
0.114
,
0.017
▁or
0.039
▁ne
0.028
ural
-0.004 / 2
▁machine▁translation
-0.114
.
0.626 / 5
That▁means▁any▁task▁that
0.851 / 4
▁transforms▁an▁input
6.222 / 5
▁sequence▁to▁an▁output▁sequence
0.01
.
0.456 / 4
▁This▁includes▁speech▁recognition
-0.024
,
0.455 / 9
▁text-to-speech▁transformation,
-0.013 / 2
▁etc.
-0.188
.
0.004
-5-7-9-3-11-10.1725-10.1725base value0.3960460.396046fпо(inputs)6.222 ▁sequence▁to▁an▁output▁sequence 0.905 ▁the▁problem▁of▁sequence 0.851 ▁transforms▁an▁input 0.626 That▁means▁any▁task▁that 0.456 ▁This▁includes▁speech▁recognition 0.455 ▁text-to-speech▁transformation, 0.39 ▁that▁have▁been▁gaining▁popularity 0.263 ▁transduction 0.204 ▁were▁developed▁to▁solve 0.12 ▁are▁a 0.114 , 0.095 . 0.074 ▁network▁architecture 0.047 ▁type▁of 0.039 ▁ne 0.028 ural 0.02 ▁Trans 0.019 ▁ne 0.017 ural 0.017 ▁or 0.01 . 0.005 s 0.004 0.001 former -0.188 . -0.114 . -0.036 s -0.034 ▁Transformer -0.024 , -0.013 ▁etc. -0.004 ▁machine▁translation
inputs
0.02
▁Trans
0.001
former
0.005
s
0.12 / 2
▁are▁a
0.047 / 2
▁type▁of
0.019
▁ne
0.017
ural
0.074 / 2
▁network▁architecture
0.39 / 5
▁that▁have▁been▁gaining▁popularity
0.095
.
-0.034 / 2
▁Transformer
-0.036
s
0.204 / 4
▁were▁developed▁to▁solve
0.905 / 4
▁the▁problem▁of▁sequence
0.263 / 3
▁transduction
0.114
,
0.017
▁or
0.039
▁ne
0.028
ural
-0.004 / 2
▁machine▁translation
-0.114
.
0.626 / 5
That▁means▁any▁task▁that
0.851 / 4
▁transforms▁an▁input
6.222 / 5
▁sequence▁to▁an▁output▁sequence
0.01
.
0.456 / 4
▁This▁includes▁speech▁recognition
-0.024
,
0.455 / 9
▁text-to-speech▁transformation,
-0.013 / 2
▁etc.
-0.188
.
0.004
-2-6-10-142610-3.86561-3.86561base value2.457962.45796fследовательность(inputs)4.543 ▁sequence▁to▁an▁output▁sequence 2.079 ▁the▁problem▁of▁sequence 0.245 ▁network▁architecture 0.158 . 0.076 ▁Transformer 0.07 ▁were▁developed▁to▁solve 0.063 ▁Trans 0.054 . 0.051 ▁machine▁translation 0.051 former 0.047 ▁type▁of 0.045 ▁or 0.037 . 0.036 s 0.033 , 0.023 ▁This▁includes▁speech▁recognition 0.013 ▁etc. 0.011 , 0.008 0.004 ural 0.001 ▁ne -0.702 That▁means▁any▁task▁that -0.406 ▁transforms▁an▁input -0.152 ▁text-to-speech▁transformation, -0.023 ▁transduction -0.014 ural -0.008 . -0.007 ▁ne -0.006 s -0.003 ▁are▁a -0.002 ▁that▁have▁been▁gaining▁popularity
inputs
0.063
▁Trans
0.051
former
-0.006
s
-0.003 / 2
▁are▁a
0.047 / 2
▁type▁of
0.001
▁ne
0.004
ural
0.245 / 2
▁network▁architecture
-0.002 / 5
▁that▁have▁been▁gaining▁popularity
0.054
.
0.076 / 2
▁Transformer
0.036
s
0.07 / 4
▁were▁developed▁to▁solve
2.079 / 4
▁the▁problem▁of▁sequence
-0.023 / 3
▁transduction
0.011
,
0.045
▁or
-0.007
▁ne
-0.014
ural
0.051 / 2
▁machine▁translation
0.037
.
-0.702 / 5
That▁means▁any▁task▁that
-0.406 / 4
▁transforms▁an▁input
4.543 / 5
▁sequence▁to▁an▁output▁sequence
-0.008
.
0.023 / 4
▁This▁includes▁speech▁recognition
0.033
,
-0.152 / 9
▁text-to-speech▁transformation,
0.013 / 2
▁etc.
0.158
.
0.008
-1-3-513-3.86561-3.86561base value2.457962.45796fследовательность(inputs)4.543 ▁sequence▁to▁an▁output▁sequence 2.079 ▁the▁problem▁of▁sequence 0.245 ▁network▁architecture 0.158 . 0.076 ▁Transformer 0.07 ▁were▁developed▁to▁solve 0.063 ▁Trans 0.054 . 0.051 ▁machine▁translation 0.051 former 0.047 ▁type▁of 0.045 ▁or 0.037 . 0.036 s 0.033 , 0.023 ▁This▁includes▁speech▁recognition 0.013 ▁etc. 0.011 , 0.008 0.004 ural 0.001 ▁ne -0.702 That▁means▁any▁task▁that -0.406 ▁transforms▁an▁input -0.152 ▁text-to-speech▁transformation, -0.023 ▁transduction -0.014 ural -0.008 . -0.007 ▁ne -0.006 s -0.003 ▁are▁a -0.002 ▁that▁have▁been▁gaining▁popularity
inputs
0.063
▁Trans
0.051
former
-0.006
s
-0.003 / 2
▁are▁a
0.047 / 2
▁type▁of
0.001
▁ne
0.004
ural
0.245 / 2
▁network▁architecture
-0.002 / 5
▁that▁have▁been▁gaining▁popularity
0.054
.
0.076 / 2
▁Transformer
0.036
s
0.07 / 4
▁were▁developed▁to▁solve
2.079 / 4
▁the▁problem▁of▁sequence
-0.023 / 3
▁transduction
0.011
,
0.045
▁or
-0.007
▁ne
-0.014
ural
0.051 / 2
▁machine▁translation
0.037
.
-0.702 / 5
That▁means▁any▁task▁that
-0.406 / 4
▁transforms▁an▁input
4.543 / 5
▁sequence▁to▁an▁output▁sequence
-0.008
.
0.023 / 4
▁This▁includes▁speech▁recognition
0.033
,
-0.152 / 9
▁text-to-speech▁transformation,
0.013 / 2
▁etc.
0.158
.
0.008
-2-6-10-142610-8.21491-8.21491base value1.075381.07538fвывода(inputs)8.352 ▁sequence▁to▁an▁output▁sequence 1.412 ▁transforms▁an▁input 0.251 . 0.227 ▁machine▁translation 0.22 ▁were▁developed▁to▁solve 0.178 . 0.105 . 0.101 ▁or 0.049 ▁ne 0.047 ural 0.036 ▁network▁architecture 0.022 0.0 ▁type▁of -0.41 ▁text-to-speech▁transformation, -0.311 That▁means▁any▁task▁that -0.184 ▁This▁includes▁speech▁recognition -0.179 ▁transduction -0.141 ▁the▁problem▁of▁sequence -0.106 ▁that▁have▁been▁gaining▁popularity -0.1 ▁etc. -0.079 , -0.049 ▁are▁a -0.044 ▁Trans -0.023 s -0.023 ural -0.019 ▁ne -0.012 ▁Transformer -0.011 , -0.008 s -0.007 former -0.005 .
inputs
-0.044
▁Trans
-0.007
former
-0.023
s
-0.049 / 2
▁are▁a
0.0 / 2
▁type▁of
0.049
▁ne
0.047
ural
0.036 / 2
▁network▁architecture
-0.106 / 5
▁that▁have▁been▁gaining▁popularity
-0.005
.
-0.012 / 2
▁Transformer
-0.008
s
0.22 / 4
▁were▁developed▁to▁solve
-0.141 / 4
▁the▁problem▁of▁sequence
-0.179 / 3
▁transduction
-0.079
,
0.101
▁or
-0.019
▁ne
-0.023
ural
0.227 / 2
▁machine▁translation
0.105
.
-0.311 / 5
That▁means▁any▁task▁that
1.412 / 4
▁transforms▁an▁input
8.352 / 5
▁sequence▁to▁an▁output▁sequence
0.251
.
-0.184 / 4
▁This▁includes▁speech▁recognition
-0.011
,
-0.41 / 9
▁text-to-speech▁transformation,
-0.1 / 2
▁etc.
0.178
.
0.022
-4-6-8-10-202-8.21491-8.21491base value1.075381.07538fвывода(inputs)8.352 ▁sequence▁to▁an▁output▁sequence 1.412 ▁transforms▁an▁input 0.251 . 0.227 ▁machine▁translation 0.22 ▁were▁developed▁to▁solve 0.178 . 0.105 . 0.101 ▁or 0.049 ▁ne 0.047 ural 0.036 ▁network▁architecture 0.022 0.0 ▁type▁of -0.41 ▁text-to-speech▁transformation, -0.311 That▁means▁any▁task▁that -0.184 ▁This▁includes▁speech▁recognition -0.179 ▁transduction -0.141 ▁the▁problem▁of▁sequence -0.106 ▁that▁have▁been▁gaining▁popularity -0.1 ▁etc. -0.079 , -0.049 ▁are▁a -0.044 ▁Trans -0.023 s -0.023 ural -0.019 ▁ne -0.012 ▁Transformer -0.011 , -0.008 s -0.007 former -0.005 .
inputs
-0.044
▁Trans
-0.007
former
-0.023
s
-0.049 / 2
▁are▁a
0.0 / 2
▁type▁of
0.049
▁ne
0.047
ural
0.036 / 2
▁network▁architecture
-0.106 / 5
▁that▁have▁been▁gaining▁popularity
-0.005
.
-0.012 / 2
▁Transformer
-0.008
s
0.22 / 4
▁were▁developed▁to▁solve
-0.141 / 4
▁the▁problem▁of▁sequence
-0.179 / 3
▁transduction
-0.079
,
0.101
▁or
-0.019
▁ne
-0.023
ural
0.227 / 2
▁machine▁translation
0.105
.
-0.311 / 5
That▁means▁any▁task▁that
1.412 / 4
▁transforms▁an▁input
8.352 / 5
▁sequence▁to▁an▁output▁sequence
0.251
.
-0.184 / 4
▁This▁includes▁speech▁recognition
-0.011
,
-0.41 / 9
▁text-to-speech▁transformation,
-0.1 / 2
▁etc.
0.178
.
0.022
-2-6-10-142610-2.68329-2.68329base value1.396331.39633f.(inputs)1.124 ▁sequence▁to▁an▁output▁sequence 1.032 . 0.607 ▁This▁includes▁speech▁recognition 0.32 ▁machine▁translation 0.288 ▁the▁problem▁of▁sequence 0.282 ▁were▁developed▁to▁solve 0.192 That▁means▁any▁task▁that 0.133 s 0.116 ▁network▁architecture 0.108 ▁that▁have▁been▁gaining▁popularity 0.106 ▁Trans 0.08 ▁are▁a 0.072 former 0.071 ▁type▁of 0.064 0.043 , 0.038 ▁transduction 0.036 . 0.03 . 0.013 ▁ne 0.009 ▁ne 0.002 ural -0.194 ▁transforms▁an▁input -0.178 ▁etc. -0.152 , -0.106 ▁text-to-speech▁transformation, -0.016 ▁or -0.016 s -0.016 ▁Transformer -0.009 . -0.001 ural
inputs
0.106
▁Trans
0.072
former
0.133
s
0.08 / 2
▁are▁a
0.071 / 2
▁type▁of
0.009
▁ne
-0.001
ural
0.116 / 2
▁network▁architecture
0.108 / 5
▁that▁have▁been▁gaining▁popularity
-0.009
.
-0.016 / 2
▁Transformer
-0.016
s
0.282 / 4
▁were▁developed▁to▁solve
0.288 / 4
▁the▁problem▁of▁sequence
0.038 / 3
▁transduction
0.043
,
-0.016
▁or
0.013
▁ne
0.002
ural
0.32 / 2
▁machine▁translation
0.036
.
0.192 / 5
That▁means▁any▁task▁that
-0.194 / 4
▁transforms▁an▁input
1.124 / 5
▁sequence▁to▁an▁output▁sequence
1.032
.
0.607 / 4
▁This▁includes▁speech▁recognition
-0.152
,
-0.106 / 9
▁text-to-speech▁transformation,
-0.178 / 2
▁etc.
0.03
.
0.064
-1-2-3012-2.68329-2.68329base value1.396331.39633f.(inputs)1.124 ▁sequence▁to▁an▁output▁sequence 1.032 . 0.607 ▁This▁includes▁speech▁recognition 0.32 ▁machine▁translation 0.288 ▁the▁problem▁of▁sequence 0.282 ▁were▁developed▁to▁solve 0.192 That▁means▁any▁task▁that 0.133 s 0.116 ▁network▁architecture 0.108 ▁that▁have▁been▁gaining▁popularity 0.106 ▁Trans 0.08 ▁are▁a 0.072 former 0.071 ▁type▁of 0.064 0.043 , 0.038 ▁transduction 0.036 . 0.03 . 0.013 ▁ne 0.009 ▁ne 0.002 ural -0.194 ▁transforms▁an▁input -0.178 ▁etc. -0.152 , -0.106 ▁text-to-speech▁transformation, -0.016 ▁or -0.016 s -0.016 ▁Transformer -0.009 . -0.001 ural
inputs
0.106
▁Trans
0.072
former
0.133
s
0.08 / 2
▁are▁a
0.071 / 2
▁type▁of
0.009
▁ne
-0.001
ural
0.116 / 2
▁network▁architecture
0.108 / 5
▁that▁have▁been▁gaining▁popularity
-0.009
.
-0.016 / 2
▁Transformer
-0.016
s
0.282 / 4
▁were▁developed▁to▁solve
0.288 / 4
▁the▁problem▁of▁sequence
0.038 / 3
▁transduction
0.043
,
-0.016
▁or
0.013
▁ne
0.002
ural
0.32 / 2
▁machine▁translation
0.036
.
0.192 / 5
That▁means▁any▁task▁that
-0.194 / 4
▁transforms▁an▁input
1.124 / 5
▁sequence▁to▁an▁output▁sequence
1.032
.
0.607 / 4
▁This▁includes▁speech▁recognition
-0.152
,
-0.106 / 9
▁text-to-speech▁transformation,
-0.178 / 2
▁etc.
0.03
.
0.064
-2-6-10-142610-7.53281-7.53281base value0.2069020.206902fЭто(inputs)4.396 ▁This▁includes▁speech▁recognition 0.821 That▁means▁any▁task▁that 0.701 ▁sequence▁to▁an▁output▁sequence 0.413 ▁text-to-speech▁transformation, 0.232 ▁transforms▁an▁input 0.225 ▁that▁have▁been▁gaining▁popularity 0.22 ▁machine▁translation 0.183 . 0.112 ▁etc. 0.097 ▁the▁problem▁of▁sequence 0.091 ▁were▁developed▁to▁solve 0.086 , 0.078 s 0.076 ▁network▁architecture 0.075 . 0.073 former 0.068 ▁Trans 0.059 . 0.055 ▁are▁a 0.05 ▁ne 0.049 ural 0.042 ▁transduction 0.039 ural 0.028 ▁type▁of 0.028 s 0.022 ▁ne 0.011 , -0.303 . -0.188 ▁or -0.082 -0.018 ▁Transformer
inputs
0.068
▁Trans
0.073
former
0.078
s
0.055 / 2
▁are▁a
0.028 / 2
▁type▁of
0.05
▁ne
0.049
ural
0.076 / 2
▁network▁architecture
0.225 / 5
▁that▁have▁been▁gaining▁popularity
0.075
.
-0.018 / 2
▁Transformer
0.028
s
0.091 / 4
▁were▁developed▁to▁solve
0.097 / 4
▁the▁problem▁of▁sequence
0.042 / 3
▁transduction
0.086
,
-0.188
▁or
0.022
▁ne
0.039
ural
0.22 / 2
▁machine▁translation
0.059
.
0.821 / 5
That▁means▁any▁task▁that
0.232 / 4
▁transforms▁an▁input
0.701 / 5
▁sequence▁to▁an▁output▁sequence
0.183
.
4.396 / 4
▁This▁includes▁speech▁recognition
0.011
,
0.413 / 9
▁text-to-speech▁transformation,
0.112 / 2
▁etc.
-0.303
.
-0.082
-4-6-8-20-7.53281-7.53281base value0.2069020.206902fЭто(inputs)4.396 ▁This▁includes▁speech▁recognition 0.821 That▁means▁any▁task▁that 0.701 ▁sequence▁to▁an▁output▁sequence 0.413 ▁text-to-speech▁transformation, 0.232 ▁transforms▁an▁input 0.225 ▁that▁have▁been▁gaining▁popularity 0.22 ▁machine▁translation 0.183 . 0.112 ▁etc. 0.097 ▁the▁problem▁of▁sequence 0.091 ▁were▁developed▁to▁solve 0.086 , 0.078 s 0.076 ▁network▁architecture 0.075 . 0.073 former 0.068 ▁Trans 0.059 . 0.055 ▁are▁a 0.05 ▁ne 0.049 ural 0.042 ▁transduction 0.039 ural 0.028 ▁type▁of 0.028 s 0.022 ▁ne 0.011 , -0.303 . -0.188 ▁or -0.082 -0.018 ▁Transformer
inputs
0.068
▁Trans
0.073
former
0.078
s
0.055 / 2
▁are▁a
0.028 / 2
▁type▁of
0.05
▁ne
0.049
ural
0.076 / 2
▁network▁architecture
0.225 / 5
▁that▁have▁been▁gaining▁popularity
0.075
.
-0.018 / 2
▁Transformer
0.028
s
0.091 / 4
▁were▁developed▁to▁solve
0.097 / 4
▁the▁problem▁of▁sequence
0.042 / 3
▁transduction
0.086
,
-0.188
▁or
0.022
▁ne
0.039
ural
0.22 / 2
▁machine▁translation
0.059
.
0.821 / 5
That▁means▁any▁task▁that
0.232 / 4
▁transforms▁an▁input
0.701 / 5
▁sequence▁to▁an▁output▁sequence
0.183
.
4.396 / 4
▁This▁includes▁speech▁recognition
0.011
,
0.413 / 9
▁text-to-speech▁transformation,
0.112 / 2
▁etc.
-0.303
.
-0.082
-2-6-10-142610-7.52923-7.52923base value1.924581.92458fвключает(inputs)7.246 ▁This▁includes▁speech▁recognition 0.68 ▁transforms▁an▁input 0.363 ▁sequence▁to▁an▁output▁sequence 0.326 That▁means▁any▁task▁that 0.138 . 0.114 . 0.085 ▁Trans 0.08 ▁network▁architecture 0.071 ▁type▁of 0.071 former 0.066 ▁etc. 0.064 ▁Transformer 0.063 ▁were▁developed▁to▁solve 0.055 ▁that▁have▁been▁gaining▁popularity 0.052 , 0.039 s 0.039 ▁or 0.036 . 0.034 ▁ne 0.027 ural 0.027 0.025 ▁ne 0.023 ▁text-to-speech▁transformation, 0.021 ural 0.017 s 0.015 . 0.006 ▁transduction -0.233 ▁the▁problem▁of▁sequence -0.074 ▁are▁a -0.015 ▁machine▁translation -0.006 ,
inputs
0.085
▁Trans
0.071
former
0.017
s
-0.074 / 2
▁are▁a
0.071 / 2
▁type▁of
0.025
▁ne
0.021
ural
0.08 / 2
▁network▁architecture
0.055 / 5
▁that▁have▁been▁gaining▁popularity
0.114
.
0.064 / 2
▁Transformer
0.039
s
0.063 / 4
▁were▁developed▁to▁solve
-0.233 / 4
▁the▁problem▁of▁sequence
0.006 / 3
▁transduction
-0.006
,
0.039
▁or
0.034
▁ne
0.027
ural
-0.015 / 2
▁machine▁translation
0.036
.
0.326 / 5
That▁means▁any▁task▁that
0.68 / 4
▁transforms▁an▁input
0.363 / 5
▁sequence▁to▁an▁output▁sequence
0.015
.
7.246 / 4
▁This▁includes▁speech▁recognition
0.052
,
0.023 / 9
▁text-to-speech▁transformation,
0.066 / 2
▁etc.
0.138
.
0.027
-3-5-7-11-7.52923-7.52923base value1.924581.92458fвключает(inputs)7.246 ▁This▁includes▁speech▁recognition 0.68 ▁transforms▁an▁input 0.363 ▁sequence▁to▁an▁output▁sequence 0.326 That▁means▁any▁task▁that 0.138 . 0.114 . 0.085 ▁Trans 0.08 ▁network▁architecture 0.071 ▁type▁of 0.071 former 0.066 ▁etc. 0.064 ▁Transformer 0.063 ▁were▁developed▁to▁solve 0.055 ▁that▁have▁been▁gaining▁popularity 0.052 , 0.039 s 0.039 ▁or 0.036 . 0.034 ▁ne 0.027 ural 0.027 0.025 ▁ne 0.023 ▁text-to-speech▁transformation, 0.021 ural 0.017 s 0.015 . 0.006 ▁transduction -0.233 ▁the▁problem▁of▁sequence -0.074 ▁are▁a -0.015 ▁machine▁translation -0.006 ,
inputs
0.085
▁Trans
0.071
former
0.017
s
-0.074 / 2
▁are▁a
0.071 / 2
▁type▁of
0.025
▁ne
0.021
ural
0.08 / 2
▁network▁architecture
0.055 / 5
▁that▁have▁been▁gaining▁popularity
0.114
.
0.064 / 2
▁Transformer
0.039
s
0.063 / 4
▁were▁developed▁to▁solve
-0.233 / 4
▁the▁problem▁of▁sequence
0.006 / 3
▁transduction
-0.006
,
0.039
▁or
0.034
▁ne
0.027
ural
-0.015 / 2
▁machine▁translation
0.036
.
0.326 / 5
That▁means▁any▁task▁that
0.68 / 4
▁transforms▁an▁input
0.363 / 5
▁sequence▁to▁an▁output▁sequence
0.015
.
7.246 / 4
▁This▁includes▁speech▁recognition
0.052
,
0.023 / 9
▁text-to-speech▁transformation,
0.066 / 2
▁etc.
0.138
.
0.027
-2-6-10-142610-9.90352-9.90352base value1.116181.11618fраспозна(inputs)9.435 ▁This▁includes▁speech▁recognition 0.367 ▁transforms▁an▁input 0.242 ▁sequence▁to▁an▁output▁sequence 0.189 ▁were▁developed▁to▁solve 0.148 ▁network▁architecture 0.144 ▁machine▁translation 0.124 ▁that▁have▁been▁gaining▁popularity 0.103 ▁transduction 0.083 . 0.078 ▁Trans 0.062 ▁or 0.059 , 0.058 ▁text-to-speech▁transformation, 0.051 ▁etc. 0.047 ural 0.044 ▁type▁of 0.042 ▁ne 0.039 . 0.035 ▁Transformer 0.028 ural 0.022 ▁ne 0.021 former 0.005 s 0.0 , -0.203 That▁means▁any▁task▁that -0.049 . -0.049 ▁are▁a -0.029 ▁the▁problem▁of▁sequence -0.029 -0.027 s -0.018 .
inputs
0.078
▁Trans
0.021
former
-0.027
s
-0.049 / 2
▁are▁a
0.044 / 2
▁type▁of
0.042
▁ne
0.047
ural
0.148 / 2
▁network▁architecture
0.124 / 5
▁that▁have▁been▁gaining▁popularity
0.039
.
0.035 / 2
▁Transformer
0.005
s
0.189 / 4
▁were▁developed▁to▁solve
-0.029 / 4
▁the▁problem▁of▁sequence
0.103 / 3
▁transduction
0.059
,
0.062
▁or
0.022
▁ne
0.028
ural
0.144 / 2
▁machine▁translation
-0.018
.
-0.203 / 5
That▁means▁any▁task▁that
0.367 / 4
▁transforms▁an▁input
0.242 / 5
▁sequence▁to▁an▁output▁sequence
-0.049
.
9.435 / 4
▁This▁includes▁speech▁recognition
0.0
,
0.058 / 9
▁text-to-speech▁transformation,
0.051 / 2
▁etc.
0.083
.
-0.029
-4-6-8-10-20-9.90352-9.90352base value1.116181.11618fраспозна(inputs)9.435 ▁This▁includes▁speech▁recognition 0.367 ▁transforms▁an▁input 0.242 ▁sequence▁to▁an▁output▁sequence 0.189 ▁were▁developed▁to▁solve 0.148 ▁network▁architecture 0.144 ▁machine▁translation 0.124 ▁that▁have▁been▁gaining▁popularity 0.103 ▁transduction 0.083 . 0.078 ▁Trans 0.062 ▁or 0.059 , 0.058 ▁text-to-speech▁transformation, 0.051 ▁etc. 0.047 ural 0.044 ▁type▁of 0.042 ▁ne 0.039 . 0.035 ▁Transformer 0.028 ural 0.022 ▁ne 0.021 former 0.005 s 0.0 , -0.203 That▁means▁any▁task▁that -0.049 . -0.049 ▁are▁a -0.029 ▁the▁problem▁of▁sequence -0.029 -0.027 s -0.018 .
inputs
0.078
▁Trans
0.021
former
-0.027
s
-0.049 / 2
▁are▁a
0.044 / 2
▁type▁of
0.042
▁ne
0.047
ural
0.148 / 2
▁network▁architecture
0.124 / 5
▁that▁have▁been▁gaining▁popularity
0.039
.
0.035 / 2
▁Transformer
0.005
s
0.189 / 4
▁were▁developed▁to▁solve
-0.029 / 4
▁the▁problem▁of▁sequence
0.103 / 3
▁transduction
0.059
,
0.062
▁or
0.022
▁ne
0.028
ural
0.144 / 2
▁machine▁translation
-0.018
.
-0.203 / 5
That▁means▁any▁task▁that
0.367 / 4
▁transforms▁an▁input
0.242 / 5
▁sequence▁to▁an▁output▁sequence
-0.049
.
9.435 / 4
▁This▁includes▁speech▁recognition
0.0
,
0.058 / 9
▁text-to-speech▁transformation,
0.051 / 2
▁etc.
0.083
.
-0.029
-2-6-10-142610-0.905656-0.905656base value2.557412.55741fвание(inputs)0.815 ▁sequence▁to▁an▁output▁sequence 0.518 ▁transforms▁an▁input 0.379 ▁the▁problem▁of▁sequence 0.287 . 0.275 That▁means▁any▁task▁that 0.205 ▁were▁developed▁to▁solve 0.149 ▁network▁architecture 0.113 ▁Trans 0.103 ▁type▁of 0.101 . 0.095 ▁etc. 0.095 ▁text-to-speech▁transformation, 0.091 ▁transduction 0.063 ▁machine▁translation 0.059 . 0.044 . 0.036 , 0.036 ▁This▁includes▁speech▁recognition 0.031 , 0.029 ▁are▁a 0.025 ▁or 0.019 ural 0.018 ▁ne 0.017 ▁that▁have▁been▁gaining▁popularity 0.014 ▁Transformer -0.037 ▁ne -0.036 ural -0.034 s -0.03 former -0.018 -0.001 s
inputs
0.113
▁Trans
-0.03
former
-0.034
s
0.029 / 2
▁are▁a
0.103 / 2
▁type▁of
0.018
▁ne
0.019
ural
0.149 / 2
▁network▁architecture
0.017 / 5
▁that▁have▁been▁gaining▁popularity
0.059
.
0.014 / 2
▁Transformer
-0.001
s
0.205 / 4
▁were▁developed▁to▁solve
0.379 / 4
▁the▁problem▁of▁sequence
0.091 / 3
▁transduction
0.031
,
0.025
▁or
-0.037
▁ne
-0.036
ural
0.063 / 2
▁machine▁translation
0.101
.
0.275 / 5
That▁means▁any▁task▁that
0.518 / 4
▁transforms▁an▁input
0.815 / 5
▁sequence▁to▁an▁output▁sequence
0.044
.
0.036 / 4
▁This▁includes▁speech▁recognition
0.036
,
0.095 / 9
▁text-to-speech▁transformation,
0.095 / 2
▁etc.
0.287
.
-0.018
10-12-0.905656-0.905656base value2.557412.55741fвание(inputs)0.815 ▁sequence▁to▁an▁output▁sequence 0.518 ▁transforms▁an▁input 0.379 ▁the▁problem▁of▁sequence 0.287 . 0.275 That▁means▁any▁task▁that 0.205 ▁were▁developed▁to▁solve 0.149 ▁network▁architecture 0.113 ▁Trans 0.103 ▁type▁of 0.101 . 0.095 ▁etc. 0.095 ▁text-to-speech▁transformation, 0.091 ▁transduction 0.063 ▁machine▁translation 0.059 . 0.044 . 0.036 , 0.036 ▁This▁includes▁speech▁recognition 0.031 , 0.029 ▁are▁a 0.025 ▁or 0.019 ural 0.018 ▁ne 0.017 ▁that▁have▁been▁gaining▁popularity 0.014 ▁Transformer -0.037 ▁ne -0.036 ural -0.034 s -0.03 former -0.018 -0.001 s
inputs
0.113
▁Trans
-0.03
former
-0.034
s
0.029 / 2
▁are▁a
0.103 / 2
▁type▁of
0.018
▁ne
0.019
ural
0.149 / 2
▁network▁architecture
0.017 / 5
▁that▁have▁been▁gaining▁popularity
0.059
.
0.014 / 2
▁Transformer
-0.001
s
0.205 / 4
▁were▁developed▁to▁solve
0.379 / 4
▁the▁problem▁of▁sequence
0.091 / 3
▁transduction
0.031
,
0.025
▁or
-0.037
▁ne
-0.036
ural
0.063 / 2
▁machine▁translation
0.101
.
0.275 / 5
That▁means▁any▁task▁that
0.518 / 4
▁transforms▁an▁input
0.815 / 5
▁sequence▁to▁an▁output▁sequence
0.044
.
0.036 / 4
▁This▁includes▁speech▁recognition
0.036
,
0.095 / 9
▁text-to-speech▁transformation,
0.095 / 2
▁etc.
0.287
.
-0.018
-2-6-10-142610-10.3535-10.3535base value1.813881.81388fречи(inputs)10.896 ▁This▁includes▁speech▁recognition 0.574 ▁text-to-speech▁transformation, 0.408 ▁machine▁translation 0.142 That▁means▁any▁task▁that 0.126 ▁sequence▁to▁an▁output▁sequence 0.09 ural 0.083 ▁ne 0.066 ural 0.066 ▁ne 0.064 ▁are▁a 0.063 ▁transforms▁an▁input 0.058 ▁etc. 0.055 ▁that▁have▁been▁gaining▁popularity 0.024 s 0.012 . 0.004 ▁transduction 0.002 , 0.001 ▁Trans 0.001 ▁the▁problem▁of▁sequence -0.169 ▁network▁architecture -0.169 . -0.063 ▁were▁developed▁to▁solve -0.052 ▁or -0.05 . -0.018 -0.011 . -0.011 s -0.01 former -0.009 ▁Transformer -0.005 , -0.002 ▁type▁of
inputs
0.001
▁Trans
-0.01
former
0.024
s
0.064 / 2
▁are▁a
-0.002 / 2
▁type▁of
0.066
▁ne
0.066
ural
-0.169 / 2
▁network▁architecture
0.055 / 5
▁that▁have▁been▁gaining▁popularity
-0.011
.
-0.009 / 2
▁Transformer
-0.011
s
-0.063 / 4
▁were▁developed▁to▁solve
0.001 / 4
▁the▁problem▁of▁sequence
0.004 / 3
▁transduction
-0.005
,
-0.052
▁or
0.083
▁ne
0.09
ural
0.408 / 2
▁machine▁translation
0.012
.
0.142 / 5
That▁means▁any▁task▁that
0.063 / 4
▁transforms▁an▁input
0.126 / 5
▁sequence▁to▁an▁output▁sequence
-0.05
.
10.896 / 4
▁This▁includes▁speech▁recognition
0.002
,
0.574 / 9
▁text-to-speech▁transformation,
0.058 / 2
▁etc.
-0.169
.
-0.018
-4-6-8-10-202-10.3535-10.3535base value1.813881.81388fречи(inputs)10.896 ▁This▁includes▁speech▁recognition 0.574 ▁text-to-speech▁transformation, 0.408 ▁machine▁translation 0.142 That▁means▁any▁task▁that 0.126 ▁sequence▁to▁an▁output▁sequence 0.09 ural 0.083 ▁ne 0.066 ural 0.066 ▁ne 0.064 ▁are▁a 0.063 ▁transforms▁an▁input 0.058 ▁etc. 0.055 ▁that▁have▁been▁gaining▁popularity 0.024 s 0.012 . 0.004 ▁transduction 0.002 , 0.001 ▁Trans 0.001 ▁the▁problem▁of▁sequence -0.169 ▁network▁architecture -0.169 . -0.063 ▁were▁developed▁to▁solve -0.052 ▁or -0.05 . -0.018 -0.011 . -0.011 s -0.01 former -0.009 ▁Transformer -0.005 , -0.002 ▁type▁of
inputs
0.001
▁Trans
-0.01
former
0.024
s
0.064 / 2
▁are▁a
-0.002 / 2
▁type▁of
0.066
▁ne
0.066
ural
-0.169 / 2
▁network▁architecture
0.055 / 5
▁that▁have▁been▁gaining▁popularity
-0.011
.
-0.009 / 2
▁Transformer
-0.011
s
-0.063 / 4
▁were▁developed▁to▁solve
0.001 / 4
▁the▁problem▁of▁sequence
0.004 / 3
▁transduction
-0.005
,
-0.052
▁or
0.083
▁ne
0.09
ural
0.408 / 2
▁machine▁translation
0.012
.
0.142 / 5
That▁means▁any▁task▁that
0.063 / 4
▁transforms▁an▁input
0.126 / 5
▁sequence▁to▁an▁output▁sequence
-0.05
.
10.896 / 4
▁This▁includes▁speech▁recognition
0.002
,
0.574 / 9
▁text-to-speech▁transformation,
0.058 / 2
▁etc.
-0.169
.
-0.018
-2-6-10-142610-1.90943-1.90943base value2.104592.10459f,(inputs)2.355 , 1.482 ▁text-to-speech▁transformation, 0.679 ▁This▁includes▁speech▁recognition 0.052 ▁sequence▁to▁an▁output▁sequence 0.028 , 0.022 ▁transduction 0.02 ▁type▁of 0.016 ▁are▁a 0.016 ▁that▁have▁been▁gaining▁popularity 0.012 ▁were▁developed▁to▁solve 0.01 . 0.009 ▁Transformer 0.008 s 0.003 s 0.001 ▁ne 0.001 former 0.001 ural -0.508 ▁etc. -0.061 That▁means▁any▁task▁that -0.03 . -0.026 ▁machine▁translation -0.018 ▁Trans -0.016 ▁the▁problem▁of▁sequence -0.015 ▁network▁architecture -0.011 ▁or -0.007 . -0.004 -0.003 ural -0.002 . -0.0 ▁ne -0.0 ▁transforms▁an▁input
inputs
-0.018
▁Trans
0.001
former
0.003
s
0.016 / 2
▁are▁a
0.02 / 2
▁type▁of
0.001
▁ne
0.001
ural
-0.015 / 2
▁network▁architecture
0.016 / 5
▁that▁have▁been▁gaining▁popularity
0.01
.
0.009 / 2
▁Transformer
0.008
s
0.012 / 4
▁were▁developed▁to▁solve
-0.016 / 4
▁the▁problem▁of▁sequence
0.022 / 3
▁transduction
0.028
,
-0.011
▁or
-0.0
▁ne
-0.003
ural
-0.026 / 2
▁machine▁translation
-0.03
.
-0.061 / 5
That▁means▁any▁task▁that
-0.0 / 4
▁transforms▁an▁input
0.052 / 5
▁sequence▁to▁an▁output▁sequence
-0.002
.
0.679 / 4
▁This▁includes▁speech▁recognition
2.355
,
1.482 / 9
▁text-to-speech▁transformation,
-0.508 / 2
▁etc.
-0.007
.
-0.004
0-1-212-1.90943-1.90943base value2.104592.10459f,(inputs)2.355 , 1.482 ▁text-to-speech▁transformation, 0.679 ▁This▁includes▁speech▁recognition 0.052 ▁sequence▁to▁an▁output▁sequence 0.028 , 0.022 ▁transduction 0.02 ▁type▁of 0.016 ▁are▁a 0.016 ▁that▁have▁been▁gaining▁popularity 0.012 ▁were▁developed▁to▁solve 0.01 . 0.009 ▁Transformer 0.008 s 0.003 s 0.001 ▁ne 0.001 former 0.001 ural -0.508 ▁etc. -0.061 That▁means▁any▁task▁that -0.03 . -0.026 ▁machine▁translation -0.018 ▁Trans -0.016 ▁the▁problem▁of▁sequence -0.015 ▁network▁architecture -0.011 ▁or -0.007 . -0.004 -0.003 ural -0.002 . -0.0 ▁ne -0.0 ▁transforms▁an▁input
inputs
-0.018
▁Trans
0.001
former
0.003
s
0.016 / 2
▁are▁a
0.02 / 2
▁type▁of
0.001
▁ne
0.001
ural
-0.015 / 2
▁network▁architecture
0.016 / 5
▁that▁have▁been▁gaining▁popularity
0.01
.
0.009 / 2
▁Transformer
0.008
s
0.012 / 4
▁were▁developed▁to▁solve
-0.016 / 4
▁the▁problem▁of▁sequence
0.022 / 3
▁transduction
0.028
,
-0.011
▁or
-0.0
▁ne
-0.003
ural
-0.026 / 2
▁machine▁translation
-0.03
.
-0.061 / 5
That▁means▁any▁task▁that
-0.0 / 4
▁transforms▁an▁input
0.052 / 5
▁sequence▁to▁an▁output▁sequence
-0.002
.
0.679 / 4
▁This▁includes▁speech▁recognition
2.355
,
1.482 / 9
▁text-to-speech▁transformation,
-0.508 / 2
▁etc.
-0.007
.
-0.004
-2-6-10-142610-8.66119-8.66119base value-0.53327-0.53327fтранс(inputs)5.576 ▁text-to-speech▁transformation, 0.497 ▁transforms▁an▁input 0.408 ▁machine▁translation 0.406 ▁etc. 0.368 ▁transduction 0.342 ▁Trans 0.284 ▁Transformer 0.244 , 0.22 ▁network▁architecture 0.133 ▁This▁includes▁speech▁recognition 0.131 s 0.126 ▁that▁have▁been▁gaining▁popularity 0.106 , 0.087 former 0.065 . 0.065 . 0.043 ural 0.035 ▁ne 0.034 . 0.002 0.001 ural -0.335 ▁sequence▁to▁an▁output▁sequence -0.272 ▁were▁developed▁to▁solve -0.147 That▁means▁any▁task▁that -0.121 ▁type▁of -0.067 ▁or -0.043 ▁the▁problem▁of▁sequence -0.035 s -0.021 . -0.002 ▁ne -0.002 ▁are▁a
inputs
0.342
▁Trans
0.087
former
-0.035
s
-0.002 / 2
▁are▁a
-0.121 / 2
▁type▁of
0.035
▁ne
0.043
ural
0.22 / 2
▁network▁architecture
0.126 / 5
▁that▁have▁been▁gaining▁popularity
0.034
.
0.284 / 2
▁Transformer
0.131
s
-0.272 / 4
▁were▁developed▁to▁solve
-0.043 / 4
▁the▁problem▁of▁sequence
0.368 / 3
▁transduction
0.244
,
-0.067
▁or
-0.002
▁ne
0.001
ural
0.408 / 2
▁machine▁translation
0.065
.
-0.147 / 5
That▁means▁any▁task▁that
0.497 / 4
▁transforms▁an▁input
-0.335 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
0.133 / 4
▁This▁includes▁speech▁recognition
0.106
,
5.576 / 9
▁text-to-speech▁transformation,
0.406 / 2
▁etc.
0.065
.
0.002
-5-7-9-3-1-8.66119-8.66119base value-0.53327-0.53327fтранс(inputs)5.576 ▁text-to-speech▁transformation, 0.497 ▁transforms▁an▁input 0.408 ▁machine▁translation 0.406 ▁etc. 0.368 ▁transduction 0.342 ▁Trans 0.284 ▁Transformer 0.244 , 0.22 ▁network▁architecture 0.133 ▁This▁includes▁speech▁recognition 0.131 s 0.126 ▁that▁have▁been▁gaining▁popularity 0.106 , 0.087 former 0.065 . 0.065 . 0.043 ural 0.035 ▁ne 0.034 . 0.002 0.001 ural -0.335 ▁sequence▁to▁an▁output▁sequence -0.272 ▁were▁developed▁to▁solve -0.147 That▁means▁any▁task▁that -0.121 ▁type▁of -0.067 ▁or -0.043 ▁the▁problem▁of▁sequence -0.035 s -0.021 . -0.002 ▁ne -0.002 ▁are▁a
inputs
0.342
▁Trans
0.087
former
-0.035
s
-0.002 / 2
▁are▁a
-0.121 / 2
▁type▁of
0.035
▁ne
0.043
ural
0.22 / 2
▁network▁architecture
0.126 / 5
▁that▁have▁been▁gaining▁popularity
0.034
.
0.284 / 2
▁Transformer
0.131
s
-0.272 / 4
▁were▁developed▁to▁solve
-0.043 / 4
▁the▁problem▁of▁sequence
0.368 / 3
▁transduction
0.244
,
-0.067
▁or
-0.002
▁ne
0.001
ural
0.408 / 2
▁machine▁translation
0.065
.
-0.147 / 5
That▁means▁any▁task▁that
0.497 / 4
▁transforms▁an▁input
-0.335 / 5
▁sequence▁to▁an▁output▁sequence
-0.021
.
0.133 / 4
▁This▁includes▁speech▁recognition
0.106
,
5.576 / 9
▁text-to-speech▁transformation,
0.406 / 2
▁etc.
0.065
.
0.002
-2-6-10-142610-1.04132-1.04132base value4.114824.11482fформ(inputs)1.505 ▁text-to-speech▁transformation, 1.272 former 1.248 ▁Transformer 0.91 s 0.763 ▁transforms▁an▁input 0.5 ▁the▁problem▁of▁sequence 0.42 ▁were▁developed▁to▁solve 0.202 ▁Trans 0.166 s 0.088 ▁etc. 0.075 ural 0.064 ▁ne 0.063 ural 0.061 ▁ne 0.055 ▁or 0.046 . 0.04 . 0.036 ▁type▁of 0.02 ▁are▁a 0.017 , 0.007 ▁network▁architecture -0.709 ▁transduction -0.613 , -0.402 ▁machine▁translation -0.363 ▁This▁includes▁speech▁recognition -0.135 ▁sequence▁to▁an▁output▁sequence -0.07 . -0.053 ▁that▁have▁been▁gaining▁popularity -0.023 -0.018 . -0.014 That▁means▁any▁task▁that
inputs
0.202
▁Trans
1.272
former
0.166
s
0.02 / 2
▁are▁a
0.036 / 2
▁type▁of
0.064
▁ne
0.075
ural
0.007 / 2
▁network▁architecture
-0.053 / 5
▁that▁have▁been▁gaining▁popularity
-0.07
.
1.248 / 2
▁Transformer
0.91
s
0.42 / 4
▁were▁developed▁to▁solve
0.5 / 4
▁the▁problem▁of▁sequence
-0.709 / 3
▁transduction
-0.613
,
0.055
▁or
0.061
▁ne
0.063
ural
-0.402 / 2
▁machine▁translation
-0.018
.
-0.014 / 5
That▁means▁any▁task▁that
0.763 / 4
▁transforms▁an▁input
-0.135 / 5
▁sequence▁to▁an▁output▁sequence
0.04
.
-0.363 / 4
▁This▁includes▁speech▁recognition
0.017
,
1.505 / 9
▁text-to-speech▁transformation,
0.088 / 2
▁etc.
0.046
.
-0.023
20-246-1.04132-1.04132base value4.114824.11482fформ(inputs)1.505 ▁text-to-speech▁transformation, 1.272 former 1.248 ▁Transformer 0.91 s 0.763 ▁transforms▁an▁input 0.5 ▁the▁problem▁of▁sequence 0.42 ▁were▁developed▁to▁solve 0.202 ▁Trans 0.166 s 0.088 ▁etc. 0.075 ural 0.064 ▁ne 0.063 ural 0.061 ▁ne 0.055 ▁or 0.046 . 0.04 . 0.036 ▁type▁of 0.02 ▁are▁a 0.017 , 0.007 ▁network▁architecture -0.709 ▁transduction -0.613 , -0.402 ▁machine▁translation -0.363 ▁This▁includes▁speech▁recognition -0.135 ▁sequence▁to▁an▁output▁sequence -0.07 . -0.053 ▁that▁have▁been▁gaining▁popularity -0.023 -0.018 . -0.014 That▁means▁any▁task▁that
inputs
0.202
▁Trans
1.272
former
0.166
s
0.02 / 2
▁are▁a
0.036 / 2
▁type▁of
0.064
▁ne
0.075
ural
0.007 / 2
▁network▁architecture
-0.053 / 5
▁that▁have▁been▁gaining▁popularity
-0.07
.
1.248 / 2
▁Transformer
0.91
s
0.42 / 4
▁were▁developed▁to▁solve
0.5 / 4
▁the▁problem▁of▁sequence
-0.709 / 3
▁transduction
-0.613
,
0.055
▁or
0.061
▁ne
0.063
ural
-0.402 / 2
▁machine▁translation
-0.018
.
-0.014 / 5
That▁means▁any▁task▁that
0.763 / 4
▁transforms▁an▁input
-0.135 / 5
▁sequence▁to▁an▁output▁sequence
0.04
.
-0.363 / 4
▁This▁includes▁speech▁recognition
0.017
,
1.505 / 9
▁text-to-speech▁transformation,
0.088 / 2
▁etc.
0.046
.
-0.023
-2-6-10-142610-0.237503-0.237503base value2.1532.153fацию(inputs)5.862 ▁text-to-speech▁transformation, 0.846 ▁transforms▁an▁input 0.664 ▁machine▁translation 0.57 ▁transduction 0.446 , 0.309 , 0.247 ▁This▁includes▁speech▁recognition 0.158 ▁etc. 0.109 ▁network▁architecture 0.081 . 0.059 ural 0.051 ural 0.048 ▁ne 0.029 0.024 ▁ne -1.759 ▁Transformer -1.386 s -0.959 ▁Trans -0.766 former -0.583 ▁sequence▁to▁an▁output▁sequence -0.505 s -0.371 ▁were▁developed▁to▁solve -0.156 ▁type▁of -0.145 ▁are▁a -0.126 ▁the▁problem▁of▁sequence -0.114 That▁means▁any▁task▁that -0.083 ▁or -0.07 . -0.068 . -0.018 . -0.003 ▁that▁have▁been▁gaining▁popularity
inputs
-0.959
▁Trans
-0.766
former
-0.505
s
-0.145 / 2
▁are▁a
-0.156 / 2
▁type▁of
0.048
▁ne
0.059
ural
0.109 / 2
▁network▁architecture
-0.003 / 5
▁that▁have▁been▁gaining▁popularity
-0.068
.
-1.759 / 2
▁Transformer
-1.386
s
-0.371 / 4
▁were▁developed▁to▁solve
-0.126 / 4
▁the▁problem▁of▁sequence
0.57 / 3
▁transduction
0.309
,
-0.083
▁or
0.024
▁ne
0.051
ural
0.664 / 2
▁machine▁translation
0.081
.
-0.114 / 5
That▁means▁any▁task▁that
0.846 / 4
▁transforms▁an▁input
-0.583 / 5
▁sequence▁to▁an▁output▁sequence
-0.07
.
0.247 / 4
▁This▁includes▁speech▁recognition
0.446
,
5.862 / 9
▁text-to-speech▁transformation,
0.158 / 2
▁etc.
-0.018
.
0.029
1-2-547-0.237503-0.237503base value2.1532.153fацию(inputs)5.862 ▁text-to-speech▁transformation, 0.846 ▁transforms▁an▁input 0.664 ▁machine▁translation 0.57 ▁transduction 0.446 , 0.309 , 0.247 ▁This▁includes▁speech▁recognition 0.158 ▁etc. 0.109 ▁network▁architecture 0.081 . 0.059 ural 0.051 ural 0.048 ▁ne 0.029 0.024 ▁ne -1.759 ▁Transformer -1.386 s -0.959 ▁Trans -0.766 former -0.583 ▁sequence▁to▁an▁output▁sequence -0.505 s -0.371 ▁were▁developed▁to▁solve -0.156 ▁type▁of -0.145 ▁are▁a -0.126 ▁the▁problem▁of▁sequence -0.114 That▁means▁any▁task▁that -0.083 ▁or -0.07 . -0.068 . -0.018 . -0.003 ▁that▁have▁been▁gaining▁popularity
inputs
-0.959
▁Trans
-0.766
former
-0.505
s
-0.145 / 2
▁are▁a
-0.156 / 2
▁type▁of
0.048
▁ne
0.059
ural
0.109 / 2
▁network▁architecture
-0.003 / 5
▁that▁have▁been▁gaining▁popularity
-0.068
.
-1.759 / 2
▁Transformer
-1.386
s
-0.371 / 4
▁were▁developed▁to▁solve
-0.126 / 4
▁the▁problem▁of▁sequence
0.57 / 3
▁transduction
0.309
,
-0.083
▁or
0.024
▁ne
0.051
ural
0.664 / 2
▁machine▁translation
0.081
.
-0.114 / 5
That▁means▁any▁task▁that
0.846 / 4
▁transforms▁an▁input
-0.583 / 5
▁sequence▁to▁an▁output▁sequence
-0.07
.
0.247 / 4
▁This▁includes▁speech▁recognition
0.446
,
5.862 / 9
▁text-to-speech▁transformation,
0.158 / 2
▁etc.
-0.018
.
0.029
-2-6-10-142610-7.33473-7.33473base value0.9306060.930606fтекста(inputs)6.49 ▁text-to-speech▁transformation, 0.718 ▁machine▁translation 0.703 ▁This▁includes▁speech▁recognition 0.482 ▁etc. 0.45 ▁transforms▁an▁input 0.165 ▁the▁problem▁of▁sequence 0.143 . 0.118 ▁sequence▁to▁an▁output▁sequence 0.112 , 0.021 former 0.018 ural 0.018 ▁ne 0.015 ▁type▁of 0.012 ▁were▁developed▁to▁solve 0.007 . -0.269 ▁network▁architecture -0.139 ▁transduction -0.128 ▁are▁a -0.117 ▁Transformer -0.105 s -0.082 . -0.08 , -0.079 ▁Trans -0.078 s -0.045 ▁ne -0.032 ural -0.024 ▁that▁have▁been▁gaining▁popularity -0.014 . -0.012 -0.003 That▁means▁any▁task▁that -0.001 ▁or
inputs
-0.079
▁Trans
0.021
former
-0.078
s
-0.128 / 2
▁are▁a
0.015 / 2
▁type▁of
0.018
▁ne
0.018
ural
-0.269 / 2
▁network▁architecture
-0.024 / 5
▁that▁have▁been▁gaining▁popularity
0.007
.
-0.117 / 2
▁Transformer
-0.105
s
0.012 / 4
▁were▁developed▁to▁solve
0.165 / 4
▁the▁problem▁of▁sequence
-0.139 / 3
▁transduction
-0.08
,
-0.001
▁or
-0.045
▁ne
-0.032
ural
0.718 / 2
▁machine▁translation
0.143
.
-0.003 / 5
That▁means▁any▁task▁that
0.45 / 4
▁transforms▁an▁input
0.118 / 5
▁sequence▁to▁an▁output▁sequence
-0.082
.
0.703 / 4
▁This▁includes▁speech▁recognition
0.112
,
6.49 / 9
▁text-to-speech▁transformation,
0.482 / 2
▁etc.
-0.014
.
-0.012
-3-5-7-11-7.33473-7.33473base value0.9306060.930606fтекста(inputs)6.49 ▁text-to-speech▁transformation, 0.718 ▁machine▁translation 0.703 ▁This▁includes▁speech▁recognition 0.482 ▁etc. 0.45 ▁transforms▁an▁input 0.165 ▁the▁problem▁of▁sequence 0.143 . 0.118 ▁sequence▁to▁an▁output▁sequence 0.112 , 0.021 former 0.018 ural 0.018 ▁ne 0.015 ▁type▁of 0.012 ▁were▁developed▁to▁solve 0.007 . -0.269 ▁network▁architecture -0.139 ▁transduction -0.128 ▁are▁a -0.117 ▁Transformer -0.105 s -0.082 . -0.08 , -0.079 ▁Trans -0.078 s -0.045 ▁ne -0.032 ural -0.024 ▁that▁have▁been▁gaining▁popularity -0.014 . -0.012 -0.003 That▁means▁any▁task▁that -0.001 ▁or
inputs
-0.079
▁Trans
0.021
former
-0.078
s
-0.128 / 2
▁are▁a
0.015 / 2
▁type▁of
0.018
▁ne
0.018
ural
-0.269 / 2
▁network▁architecture
-0.024 / 5
▁that▁have▁been▁gaining▁popularity
0.007
.
-0.117 / 2
▁Transformer
-0.105
s
0.012 / 4
▁were▁developed▁to▁solve
0.165 / 4
▁the▁problem▁of▁sequence
-0.139 / 3
▁transduction
-0.08
,
-0.001
▁or
-0.045
▁ne
-0.032
ural
0.718 / 2
▁machine▁translation
0.143
.
-0.003 / 5
That▁means▁any▁task▁that
0.45 / 4
▁transforms▁an▁input
0.118 / 5
▁sequence▁to▁an▁output▁sequence
-0.082
.
0.703 / 4
▁This▁includes▁speech▁recognition
0.112
,
6.49 / 9
▁text-to-speech▁transformation,
0.482 / 2
▁etc.
-0.014
.
-0.012
-2-6-10-142610-3.35469-3.35469base value0.02818260.0281826fв(inputs)2.525 ▁text-to-speech▁transformation, 0.492 ▁sequence▁to▁an▁output▁sequence 0.423 ▁transforms▁an▁input 0.103 That▁means▁any▁task▁that 0.094 , 0.08 ▁the▁problem▁of▁sequence 0.076 . 0.065 . 0.064 ▁machine▁translation 0.056 ▁that▁have▁been▁gaining▁popularity 0.049 . 0.041 ▁transduction 0.028 ural 0.017 ▁were▁developed▁to▁solve 0.016 ▁ne 0.015 0.014 ▁ne 0.013 . 0.012 former 0.006 ural 0.005 , -0.362 ▁This▁includes▁speech▁recognition -0.156 ▁etc. -0.078 ▁Trans -0.048 ▁or -0.043 ▁Transformer -0.038 ▁network▁architecture -0.036 ▁type▁of -0.028 s -0.013 s -0.011 ▁are▁a
inputs
-0.078
▁Trans
0.012
former
-0.013
s
-0.011 / 2
▁are▁a
-0.036 / 2
▁type▁of
0.014
▁ne
0.006
ural
-0.038 / 2
▁network▁architecture
0.056 / 5
▁that▁have▁been▁gaining▁popularity
0.013
.
-0.043 / 2
▁Transformer
-0.028
s
0.017 / 4
▁were▁developed▁to▁solve
0.08 / 4
▁the▁problem▁of▁sequence
0.041 / 3
▁transduction
0.005
,
-0.048
▁or
0.016
▁ne
0.028
ural
0.064 / 2
▁machine▁translation
0.065
.
0.103 / 5
That▁means▁any▁task▁that
0.423 / 4
▁transforms▁an▁input
0.492 / 5
▁sequence▁to▁an▁output▁sequence
0.049
.
-0.362 / 4
▁This▁includes▁speech▁recognition
0.094
,
2.525 / 9
▁text-to-speech▁transformation,
-0.156 / 2
▁etc.
0.076
.
0.015
-2-3-4-10-3.35469-3.35469base value0.02818260.0281826fв(inputs)2.525 ▁text-to-speech▁transformation, 0.492 ▁sequence▁to▁an▁output▁sequence 0.423 ▁transforms▁an▁input 0.103 That▁means▁any▁task▁that 0.094 , 0.08 ▁the▁problem▁of▁sequence 0.076 . 0.065 . 0.064 ▁machine▁translation 0.056 ▁that▁have▁been▁gaining▁popularity 0.049 . 0.041 ▁transduction 0.028 ural 0.017 ▁were▁developed▁to▁solve 0.016 ▁ne 0.015 0.014 ▁ne 0.013 . 0.012 former 0.006 ural 0.005 , -0.362 ▁This▁includes▁speech▁recognition -0.156 ▁etc. -0.078 ▁Trans -0.048 ▁or -0.043 ▁Transformer -0.038 ▁network▁architecture -0.036 ▁type▁of -0.028 s -0.013 s -0.011 ▁are▁a
inputs
-0.078
▁Trans
0.012
former
-0.013
s
-0.011 / 2
▁are▁a
-0.036 / 2
▁type▁of
0.014
▁ne
0.006
ural
-0.038 / 2
▁network▁architecture
0.056 / 5
▁that▁have▁been▁gaining▁popularity
0.013
.
-0.043 / 2
▁Transformer
-0.028
s
0.017 / 4
▁were▁developed▁to▁solve
0.08 / 4
▁the▁problem▁of▁sequence
0.041 / 3
▁transduction
0.005
,
-0.048
▁or
0.016
▁ne
0.028
ural
0.064 / 2
▁machine▁translation
0.065
.
0.103 / 5
That▁means▁any▁task▁that
0.423 / 4
▁transforms▁an▁input
0.492 / 5
▁sequence▁to▁an▁output▁sequence
0.049
.
-0.362 / 4
▁This▁includes▁speech▁recognition
0.094
,
2.525 / 9
▁text-to-speech▁transformation,
-0.156 / 2
▁etc.
0.076
.
0.015
-2-6-10-142610-8.72655-8.72655base value-3.0373-3.0373fзвук(inputs)3.351 ▁text-to-speech▁transformation, 0.712 ▁sequence▁to▁an▁output▁sequence 0.515 ▁This▁includes▁speech▁recognition 0.311 ▁machine▁translation 0.28 ▁transforms▁an▁input 0.183 That▁means▁any▁task▁that 0.159 ▁etc. 0.151 ▁were▁developed▁to▁solve 0.122 ▁network▁architecture 0.109 ▁the▁problem▁of▁sequence 0.092 ▁transduction 0.068 , 0.053 . 0.037 s 0.035 ▁that▁have▁been▁gaining▁popularity 0.025 . 0.024 ▁Transformer 0.011 . 0.001 . -0.152 ▁Trans -0.119 ▁ne -0.101 ural -0.034 s -0.03 ▁are▁a -0.025 ▁ne -0.024 ▁type▁of -0.024 -0.023 ural -0.009 , -0.008 former -0.001 ▁or
inputs
-0.152
▁Trans
-0.008
former
-0.034
s
-0.03 / 2
▁are▁a
-0.024 / 2
▁type▁of
-0.025
▁ne
-0.023
ural
0.122 / 2
▁network▁architecture
0.035 / 5
▁that▁have▁been▁gaining▁popularity
0.025
.
0.024 / 2
▁Transformer
0.037
s
0.151 / 4
▁were▁developed▁to▁solve
0.109 / 4
▁the▁problem▁of▁sequence
0.092 / 3
▁transduction
0.068
,
-0.001
▁or
-0.119
▁ne
-0.101
ural
0.311 / 2
▁machine▁translation
0.053
.
0.183 / 5
That▁means▁any▁task▁that
0.28 / 4
▁transforms▁an▁input
0.712 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
0.515 / 4
▁This▁includes▁speech▁recognition
-0.009
,
3.351 / 9
▁text-to-speech▁transformation,
0.159 / 2
▁etc.
0.011
.
-0.024
-6-7-8-9-5-4-3-8.72655-8.72655base value-3.0373-3.0373fзвук(inputs)3.351 ▁text-to-speech▁transformation, 0.712 ▁sequence▁to▁an▁output▁sequence 0.515 ▁This▁includes▁speech▁recognition 0.311 ▁machine▁translation 0.28 ▁transforms▁an▁input 0.183 That▁means▁any▁task▁that 0.159 ▁etc. 0.151 ▁were▁developed▁to▁solve 0.122 ▁network▁architecture 0.109 ▁the▁problem▁of▁sequence 0.092 ▁transduction 0.068 , 0.053 . 0.037 s 0.035 ▁that▁have▁been▁gaining▁popularity 0.025 . 0.024 ▁Transformer 0.011 . 0.001 . -0.152 ▁Trans -0.119 ▁ne -0.101 ural -0.034 s -0.03 ▁are▁a -0.025 ▁ne -0.024 ▁type▁of -0.024 -0.023 ural -0.009 , -0.008 former -0.001 ▁or
inputs
-0.152
▁Trans
-0.008
former
-0.034
s
-0.03 / 2
▁are▁a
-0.024 / 2
▁type▁of
-0.025
▁ne
-0.023
ural
0.122 / 2
▁network▁architecture
0.035 / 5
▁that▁have▁been▁gaining▁popularity
0.025
.
0.024 / 2
▁Transformer
0.037
s
0.151 / 4
▁were▁developed▁to▁solve
0.109 / 4
▁the▁problem▁of▁sequence
0.092 / 3
▁transduction
0.068
,
-0.001
▁or
-0.119
▁ne
-0.101
ural
0.311 / 2
▁machine▁translation
0.053
.
0.183 / 5
That▁means▁any▁task▁that
0.28 / 4
▁transforms▁an▁input
0.712 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
0.515 / 4
▁This▁includes▁speech▁recognition
-0.009
,
3.351 / 9
▁text-to-speech▁transformation,
0.159 / 2
▁etc.
0.011
.
-0.024
-2-6-10-142610-4.83874-4.83874base value0.3025330.302533fи(inputs)2.358 ▁etc. 1.987 ▁text-to-speech▁transformation, 0.209 ▁transduction 0.173 ▁This▁includes▁speech▁recognition 0.164 ▁that▁have▁been▁gaining▁popularity 0.121 That▁means▁any▁task▁that 0.105 ▁the▁problem▁of▁sequence 0.089 , 0.081 , 0.074 ▁machine▁translation 0.074 . 0.07 ▁or 0.051 . 0.038 ▁were▁developed▁to▁solve 0.037 ▁ne 0.037 ▁network▁architecture 0.031 ▁ne 0.03 ural 0.03 ural 0.015 s 0.014 ▁type▁of 0.012 ▁are▁a 0.011 . 0.003 former 0.002 -0.3 ▁transforms▁an▁input -0.253 ▁sequence▁to▁an▁output▁sequence -0.044 ▁Trans -0.039 ▁Transformer -0.035 . -0.003 s
inputs
-0.044
▁Trans
0.003
former
0.015
s
0.012 / 2
▁are▁a
0.014 / 2
▁type▁of
0.031
▁ne
0.03
ural
0.037 / 2
▁network▁architecture
0.164 / 5
▁that▁have▁been▁gaining▁popularity
0.074
.
-0.039 / 2
▁Transformer
-0.003
s
0.038 / 4
▁were▁developed▁to▁solve
0.105 / 4
▁the▁problem▁of▁sequence
0.209 / 3
▁transduction
0.089
,
0.07
▁or
0.037
▁ne
0.03
ural
0.074 / 2
▁machine▁translation
0.011
.
0.121 / 5
That▁means▁any▁task▁that
-0.3 / 4
▁transforms▁an▁input
-0.253 / 5
▁sequence▁to▁an▁output▁sequence
0.051
.
0.173 / 4
▁This▁includes▁speech▁recognition
0.081
,
1.987 / 9
▁text-to-speech▁transformation,
2.358 / 2
▁etc.
-0.035
.
0.002
-2-3-4-5-101-4.83874-4.83874base value0.3025330.302533fи(inputs)2.358 ▁etc. 1.987 ▁text-to-speech▁transformation, 0.209 ▁transduction 0.173 ▁This▁includes▁speech▁recognition 0.164 ▁that▁have▁been▁gaining▁popularity 0.121 That▁means▁any▁task▁that 0.105 ▁the▁problem▁of▁sequence 0.089 , 0.081 , 0.074 ▁machine▁translation 0.074 . 0.07 ▁or 0.051 . 0.038 ▁were▁developed▁to▁solve 0.037 ▁ne 0.037 ▁network▁architecture 0.031 ▁ne 0.03 ural 0.03 ural 0.015 s 0.014 ▁type▁of 0.012 ▁are▁a 0.011 . 0.003 former 0.002 -0.3 ▁transforms▁an▁input -0.253 ▁sequence▁to▁an▁output▁sequence -0.044 ▁Trans -0.039 ▁Transformer -0.035 . -0.003 s
inputs
-0.044
▁Trans
0.003
former
0.015
s
0.012 / 2
▁are▁a
0.014 / 2
▁type▁of
0.031
▁ne
0.03
ural
0.037 / 2
▁network▁architecture
0.164 / 5
▁that▁have▁been▁gaining▁popularity
0.074
.
-0.039 / 2
▁Transformer
-0.003
s
0.038 / 4
▁were▁developed▁to▁solve
0.105 / 4
▁the▁problem▁of▁sequence
0.209 / 3
▁transduction
0.089
,
0.07
▁or
0.037
▁ne
0.03
ural
0.074 / 2
▁machine▁translation
0.011
.
0.121 / 5
That▁means▁any▁task▁that
-0.3 / 4
▁transforms▁an▁input
-0.253 / 5
▁sequence▁to▁an▁output▁sequence
0.051
.
0.173 / 4
▁This▁includes▁speech▁recognition
0.081
,
1.987 / 9
▁text-to-speech▁transformation,
2.358 / 2
▁etc.
-0.035
.
0.002
-2-6-10-142610-5.33001-5.33001base value1.557341.55734fт(inputs)5.441 ▁etc. 0.624 ▁text-to-speech▁transformation, 0.496 ▁This▁includes▁speech▁recognition 0.118 ▁type▁of 0.105 . 0.098 ▁Trans 0.096 ▁the▁problem▁of▁sequence 0.082 ▁are▁a 0.068 . 0.048 ▁or 0.045 . 0.042 ▁transduction 0.036 s 0.036 That▁means▁any▁task▁that 0.033 , 0.031 ▁that▁have▁been▁gaining▁popularity 0.015 ▁were▁developed▁to▁solve 0.007 ▁network▁architecture -0.17 ▁transforms▁an▁input -0.089 ▁sequence▁to▁an▁output▁sequence -0.067 former -0.046 -0.038 ural -0.037 ▁ne -0.031 ▁Transformer -0.021 s -0.011 , -0.008 ural -0.006 ▁ne -0.006 . -0.004 ▁machine▁translation
inputs
0.098
▁Trans
-0.067
former
0.036
s
0.082 / 2
▁are▁a
0.118 / 2
▁type▁of
-0.006
▁ne
-0.008
ural
0.007 / 2
▁network▁architecture
0.031 / 5
▁that▁have▁been▁gaining▁popularity
0.068
.
-0.031 / 2
▁Transformer
-0.021
s
0.015 / 4
▁were▁developed▁to▁solve
0.096 / 4
▁the▁problem▁of▁sequence
0.042 / 3
▁transduction
0.033
,
0.048
▁or
-0.037
▁ne
-0.038
ural
-0.004 / 2
▁machine▁translation
0.045
.
0.036 / 5
That▁means▁any▁task▁that
-0.17 / 4
▁transforms▁an▁input
-0.089 / 5
▁sequence▁to▁an▁output▁sequence
-0.006
.
0.496 / 4
▁This▁includes▁speech▁recognition
-0.011
,
0.624 / 9
▁text-to-speech▁transformation,
5.441 / 2
▁etc.
0.105
.
-0.046
-2-3-4-5-1012-5.33001-5.33001base value1.557341.55734fт(inputs)5.441 ▁etc. 0.624 ▁text-to-speech▁transformation, 0.496 ▁This▁includes▁speech▁recognition 0.118 ▁type▁of 0.105 . 0.098 ▁Trans 0.096 ▁the▁problem▁of▁sequence 0.082 ▁are▁a 0.068 . 0.048 ▁or 0.045 . 0.042 ▁transduction 0.036 s 0.036 That▁means▁any▁task▁that 0.033 , 0.031 ▁that▁have▁been▁gaining▁popularity 0.015 ▁were▁developed▁to▁solve 0.007 ▁network▁architecture -0.17 ▁transforms▁an▁input -0.089 ▁sequence▁to▁an▁output▁sequence -0.067 former -0.046 -0.038 ural -0.037 ▁ne -0.031 ▁Transformer -0.021 s -0.011 , -0.008 ural -0.006 ▁ne -0.006 . -0.004 ▁machine▁translation
inputs
0.098
▁Trans
-0.067
former
0.036
s
0.082 / 2
▁are▁a
0.118 / 2
▁type▁of
-0.006
▁ne
-0.008
ural
0.007 / 2
▁network▁architecture
0.031 / 5
▁that▁have▁been▁gaining▁popularity
0.068
.
-0.031 / 2
▁Transformer
-0.021
s
0.015 / 4
▁were▁developed▁to▁solve
0.096 / 4
▁the▁problem▁of▁sequence
0.042 / 3
▁transduction
0.033
,
0.048
▁or
-0.037
▁ne
-0.038
ural
-0.004 / 2
▁machine▁translation
0.045
.
0.036 / 5
That▁means▁any▁task▁that
-0.17 / 4
▁transforms▁an▁input
-0.089 / 5
▁sequence▁to▁an▁output▁sequence
-0.006
.
0.496 / 4
▁This▁includes▁speech▁recognition
-0.011
,
0.624 / 9
▁text-to-speech▁transformation,
5.441 / 2
▁etc.
0.105
.
-0.046
-2-6-10-1426102.412062.41206base value2.22292.2229f.(inputs)0.053 . 0.014 . 0.013 . 0.006 ▁are▁a 0.005 . 0.005 That▁means▁any▁task▁that 0.004 ▁ne 0.004 ▁that▁have▁been▁gaining▁popularity 0.004 ural 0.004 ▁or 0.003 ▁type▁of 0.001 ▁ne 0.001 , 0.001 ural -0.097 ▁text-to-speech▁transformation, -0.025 ▁sequence▁to▁an▁output▁sequence -0.025 ▁network▁architecture -0.023 ▁transforms▁an▁input -0.023 ▁were▁developed▁to▁solve -0.022 ▁Trans -0.016 ▁This▁includes▁speech▁recognition -0.014 ▁etc. -0.013 ▁machine▁translation -0.01 ▁Transformer -0.009 s -0.009 -0.006 ▁the▁problem▁of▁sequence -0.005 ▁transduction -0.003 , -0.002 s -0.002 former
inputs
-0.022
▁Trans
-0.002
former
-0.002
s
0.006 / 2
▁are▁a
0.003 / 2
▁type▁of
0.004
▁ne
0.004
ural
-0.025 / 2
▁network▁architecture
0.004 / 5
▁that▁have▁been▁gaining▁popularity
0.014
.
-0.01 / 2
▁Transformer
-0.009
s
-0.023 / 4
▁were▁developed▁to▁solve
-0.006 / 4
▁the▁problem▁of▁sequence
-0.005 / 3
▁transduction
-0.003
,
0.004
▁or
0.001
▁ne
0.001
ural
-0.013 / 2
▁machine▁translation
0.013
.
0.005 / 5
That▁means▁any▁task▁that
-0.023 / 4
▁transforms▁an▁input
-0.025 / 5
▁sequence▁to▁an▁output▁sequence
0.005
.
-0.016 / 4
▁This▁includes▁speech▁recognition
0.001
,
-0.097 / 9
▁text-to-speech▁transformation,
-0.014 / 2
▁etc.
0.053
.
-0.009
2.32.22.12.42.52.412062.41206base value2.22292.2229f.(inputs)0.053 . 0.014 . 0.013 . 0.006 ▁are▁a 0.005 . 0.005 That▁means▁any▁task▁that 0.004 ▁ne 0.004 ▁that▁have▁been▁gaining▁popularity 0.004 ural 0.004 ▁or 0.003 ▁type▁of 0.001 ▁ne 0.001 , 0.001 ural -0.097 ▁text-to-speech▁transformation, -0.025 ▁sequence▁to▁an▁output▁sequence -0.025 ▁network▁architecture -0.023 ▁transforms▁an▁input -0.023 ▁were▁developed▁to▁solve -0.022 ▁Trans -0.016 ▁This▁includes▁speech▁recognition -0.014 ▁etc. -0.013 ▁machine▁translation -0.01 ▁Transformer -0.009 s -0.009 -0.006 ▁the▁problem▁of▁sequence -0.005 ▁transduction -0.003 , -0.002 s -0.002 former
inputs
-0.022
▁Trans
-0.002
former
-0.002
s
0.006 / 2
▁are▁a
0.003 / 2
▁type▁of
0.004
▁ne
0.004
ural
-0.025 / 2
▁network▁architecture
0.004 / 5
▁that▁have▁been▁gaining▁popularity
0.014
.
-0.01 / 2
▁Transformer
-0.009
s
-0.023 / 4
▁were▁developed▁to▁solve
-0.006 / 4
▁the▁problem▁of▁sequence
-0.005 / 3
▁transduction
-0.003
,
0.004
▁or
0.001
▁ne
0.001
ural
-0.013 / 2
▁machine▁translation
0.013
.
0.005 / 5
That▁means▁any▁task▁that
-0.023 / 4
▁transforms▁an▁input
-0.025 / 5
▁sequence▁to▁an▁output▁sequence
0.005
.
-0.016 / 4
▁This▁includes▁speech▁recognition
0.001
,
-0.097 / 9
▁text-to-speech▁transformation,
-0.014 / 2
▁etc.
0.053
.
-0.009
-2-6-10-1426101.129551.12955base value1.125951.12595fд(inputs)0.103 ▁etc. 0.035 ▁text-to-speech▁transformation, 0.03 . 0.021 . 0.02 ▁Trans 0.016 ▁machine▁translation 0.012 ▁This▁includes▁speech▁recognition 0.008 ▁transduction 0.006 ▁network▁architecture 0.005 That▁means▁any▁task▁that 0.003 ▁Transformer 0.003 former 0.003 ▁the▁problem▁of▁sequence 0.002 . 0.001 s -0.058 ▁that▁have▁been▁gaining▁popularity -0.03 ▁transforms▁an▁input -0.029 -0.024 ural -0.022 ▁ne -0.02 ▁type▁of -0.017 ▁ne -0.015 ural -0.013 ▁are▁a -0.013 . -0.008 ▁sequence▁to▁an▁output▁sequence -0.008 , -0.007 ▁were▁developed▁to▁solve -0.007 , -0.0 s -0.0 ▁or
inputs
0.02
▁Trans
0.003
former
-0.0
s
-0.013 / 2
▁are▁a
-0.02 / 2
▁type▁of
-0.017
▁ne
-0.015
ural
0.006 / 2
▁network▁architecture
-0.058 / 5
▁that▁have▁been▁gaining▁popularity
0.002
.
0.003 / 2
▁Transformer
0.001
s
-0.007 / 4
▁were▁developed▁to▁solve
0.003 / 4
▁the▁problem▁of▁sequence
0.008 / 3
▁transduction
-0.007
,
-0.0
▁or
-0.022
▁ne
-0.024
ural
0.016 / 2
▁machine▁translation
0.021
.
0.005 / 5
That▁means▁any▁task▁that
-0.03 / 4
▁transforms▁an▁input
-0.008 / 5
▁sequence▁to▁an▁output▁sequence
-0.013
.
0.012 / 4
▁This▁includes▁speech▁recognition
-0.008
,
0.035 / 9
▁text-to-speech▁transformation,
0.103 / 2
▁etc.
0.03
.
-0.029
1.110.91.21.31.41.129551.12955base value1.125951.12595fд(inputs)0.103 ▁etc. 0.035 ▁text-to-speech▁transformation, 0.03 . 0.021 . 0.02 ▁Trans 0.016 ▁machine▁translation 0.012 ▁This▁includes▁speech▁recognition 0.008 ▁transduction 0.006 ▁network▁architecture 0.005 That▁means▁any▁task▁that 0.003 ▁Transformer 0.003 former 0.003 ▁the▁problem▁of▁sequence 0.002 . 0.001 s -0.058 ▁that▁have▁been▁gaining▁popularity -0.03 ▁transforms▁an▁input -0.029 -0.024 ural -0.022 ▁ne -0.02 ▁type▁of -0.017 ▁ne -0.015 ural -0.013 ▁are▁a -0.013 . -0.008 ▁sequence▁to▁an▁output▁sequence -0.008 , -0.007 ▁were▁developed▁to▁solve -0.007 , -0.0 s -0.0 ▁or
inputs
0.02
▁Trans
0.003
former
-0.0
s
-0.013 / 2
▁are▁a
-0.02 / 2
▁type▁of
-0.017
▁ne
-0.015
ural
0.006 / 2
▁network▁architecture
-0.058 / 5
▁that▁have▁been▁gaining▁popularity
0.002
.
0.003 / 2
▁Transformer
0.001
s
-0.007 / 4
▁were▁developed▁to▁solve
0.003 / 4
▁the▁problem▁of▁sequence
0.008 / 3
▁transduction
-0.007
,
-0.0
▁or
-0.022
▁ne
-0.024
ural
0.016 / 2
▁machine▁translation
0.021
.
0.005 / 5
That▁means▁any▁task▁that
-0.03 / 4
▁transforms▁an▁input
-0.008 / 5
▁sequence▁to▁an▁output▁sequence
-0.013
.
0.012 / 4
▁This▁includes▁speech▁recognition
-0.008
,
0.035 / 9
▁text-to-speech▁transformation,
0.103 / 2
▁etc.
0.03
.
-0.029
-2-6-10-1426102.138882.13888base value2.175252.17525f.(inputs)0.049 ▁etc. 0.027 . 0.015 ▁text-to-speech▁transformation, 0.012 ▁that▁have▁been▁gaining▁popularity 0.012 . 0.007 0.004 ural 0.003 . 0.003 ▁ne 0.002 ural 0.001 former 0.001 . 0.001 s 0.001 ▁ne 0.001 ▁type▁of 0.0 ▁the▁problem▁of▁sequence -0.027 ▁This▁includes▁speech▁recognition -0.014 That▁means▁any▁task▁that -0.011 ▁transforms▁an▁input -0.011 ▁sequence▁to▁an▁output▁sequence -0.009 ▁Trans -0.005 ▁transduction -0.004 , -0.003 ▁Transformer -0.003 ▁are▁a -0.003 ▁or -0.003 ▁were▁developed▁to▁solve -0.003 , -0.002 ▁network▁architecture -0.002 s -0.002 ▁machine▁translation
inputs
-0.009
▁Trans
0.001
former
0.001
s
-0.003 / 2
▁are▁a
0.001 / 2
▁type▁of
0.003
▁ne
0.002
ural
-0.002 / 2
▁network▁architecture
0.012 / 5
▁that▁have▁been▁gaining▁popularity
0.012
.
-0.003 / 2
▁Transformer
-0.002
s
-0.003 / 4
▁were▁developed▁to▁solve
0.0 / 4
▁the▁problem▁of▁sequence
-0.005 / 3
▁transduction
-0.003
,
-0.003
▁or
0.001
▁ne
0.004
ural
-0.002 / 2
▁machine▁translation
0.003
.
-0.014 / 5
That▁means▁any▁task▁that
-0.011 / 4
▁transforms▁an▁input
-0.011 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
-0.027 / 4
▁This▁includes▁speech▁recognition
-0.004
,
0.015 / 9
▁text-to-speech▁transformation,
0.049 / 2
▁etc.
0.027
.
0.007
2.162.122.082.042.22.242.282.138882.13888base value2.175252.17525f.(inputs)0.049 ▁etc. 0.027 . 0.015 ▁text-to-speech▁transformation, 0.012 ▁that▁have▁been▁gaining▁popularity 0.012 . 0.007 0.004 ural 0.003 . 0.003 ▁ne 0.002 ural 0.001 former 0.001 . 0.001 s 0.001 ▁ne 0.001 ▁type▁of 0.0 ▁the▁problem▁of▁sequence -0.027 ▁This▁includes▁speech▁recognition -0.014 That▁means▁any▁task▁that -0.011 ▁transforms▁an▁input -0.011 ▁sequence▁to▁an▁output▁sequence -0.009 ▁Trans -0.005 ▁transduction -0.004 , -0.003 ▁Transformer -0.003 ▁are▁a -0.003 ▁or -0.003 ▁were▁developed▁to▁solve -0.003 , -0.002 ▁network▁architecture -0.002 s -0.002 ▁machine▁translation
inputs
-0.009
▁Trans
0.001
former
0.001
s
-0.003 / 2
▁are▁a
0.001 / 2
▁type▁of
0.003
▁ne
0.002
ural
-0.002 / 2
▁network▁architecture
0.012 / 5
▁that▁have▁been▁gaining▁popularity
0.012
.
-0.003 / 2
▁Transformer
-0.002
s
-0.003 / 4
▁were▁developed▁to▁solve
0.0 / 4
▁the▁problem▁of▁sequence
-0.005 / 3
▁transduction
-0.003
,
-0.003
▁or
0.001
▁ne
0.004
ural
-0.002 / 2
▁machine▁translation
0.003
.
-0.014 / 5
That▁means▁any▁task▁that
-0.011 / 4
▁transforms▁an▁input
-0.011 / 5
▁sequence▁to▁an▁output▁sequence
0.001
.
-0.027 / 4
▁This▁includes▁speech▁recognition
-0.004
,
0.015 / 9
▁text-to-speech▁transformation,
0.049 / 2
▁etc.
0.027
.
0.007

Данная языковая модель предсказывает эмбеддинги — вектора, которые преобразуются в токены. При этом SHAP для оценки важности использует сжатые представления эмбеддингов. В данном случае наибольший интерес представляет не раскраска outputs (абсолютное значение сжатого представления эмбеддинга на выходе), а подсветка inputs, которая появляется, когда мы нажимаем на выходной токен. Она показывает, какие входные токены влияют на выходной.

Пример NLP (абстрактное обобщение текста)¶

В этом примере мы рассмотрим интерпретацию составления резюме статьи с помощью предварительно обученной модели.

Используется датасет Extreme Summarization XSum 🛠️[doc].

In [47]:
!pip install -q datasets
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 510.5/510.5 kB 5.7 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 116.3/116.3 kB 6.6 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 194.1/194.1 kB 8.5 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 134.8/134.8 kB 7.8 MB/s eta 0:00:00
In [48]:
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-xsum-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-xsum-12-6").to(
    device
)


dataset = load_dataset("xsum", split="train", trust_remote_code=True)  # load dataset
s = dataset["document"][0:1]  # slice inputs from dataset to run model inference on
explainer = shap.Explainer(model, tokenizer)  # create an explainer object
explanation = explainer(s)  # Compute shap values
clear_output()
In [49]:
shap.initjs()
shap.plots.text(explanation)  # Visualize shap explanations


[0]
outputs
The
impact
of
flooding
in
Dum
f
ries
and
Gall
oway
and
the
Borders
is
continuing
to
be
felt
.


-3-6-903-3.23487-3.23487base value-1.90088-1.90088fThe(inputs)0.231 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.19 The full cost 0.18 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.158 immediate steps" were taken to protect 0.154 the impact on businesses." He said it was important that " 0.148 a flood alert remains in place across the Borders because of the constant rain. 0.143 one of the areas worst affected, is still being assessed. 0.139 have been carried out to ensure the retaining 0.116 "Obviously it is heart-breaking 0.115 Hawick and many roads in Peeblesshire 0.11 she said more preventative work could 0.107 for people who have been forced out of their homes and 0.099 standing water. 0.095 However, 0.092 Repair work is ongoing in 0.089 remain badly affected by 0.088 the areas most vulnerable and a clear timetable put 0.087 in place for flood prevention plans. 0.086 and I totally appreciate that - 0.084 "I was quite taken aback by the amount of damage that has been done," he said. 0.083 the Nith - 0.078 said she could not fault the multi- 0.075 but backed calls to speed up the process. 0.073 He said it was important to get the flood protection plan right 0.064 it is perhaps my perspective over the last few days. 0.064 wall did not fail. 0.058 of damage in Newton Stewart, 0.051 The waters breached a retaining wall, 0.048 Dumfries 0.047 agency response once the flood hit. 0.034 "That may not be true but 0.03 and 0.024 Have you been 0.022 "It is difficult but I do think there 0.019 Rowley was in Hawick on Monday 0.013 is so much publicity for -0.244 to damage at the Lamington Viaduct. -0.205 Trains on the west coast mainline face disruption due -0.202 but it is almost like we're neglected or forgotten," she said. -0.161 Stewart after the River Cree overflowed into the town. -0.148 The Labour Party -0.145 Scottish Borders Council has put a list on its website of the roads worst affected and -0.143 Many businesses and householders were affected by flooding in Newton -0.136 affected by flooding in -0.109 Dumfries -0.105 drivers have been urged not to ignore closure signs. -0.062 Peebles was badly hit by problems, -0.053 to see the situation first hand. -0.041 Jeanette Tate, -0.034 First Minister Nicola Sturgeon visited the area -0.034 to inspect the damage. -0.02 uk or dumfries@bbc.co.uk. -0.02 who owns the Cinnamon Cafe which was badly affected, -0.02 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.018 ? -0.015 and Galloway -0.014 or -0.013 the Borders -0.012 sparking calls to introduce more defences in the area. -0.003 's deputy Scottish leader Alex
inputs
0.19 / 4
The full cost
0.058 / 6
of damage in Newton Stewart,
0.143 / 12
one of the areas worst affected, is still being assessed.
0.092 / 7
Repair work is ongoing in
0.115 / 11
Hawick and many roads in Peeblesshire
0.089 / 4
remain badly affected by
0.099 / 3
standing water.
-0.205 / 11
Trains on the west coast mainline face disruption due
-0.244 / 11
to damage at the Lamington Viaduct.
-0.143 / 12
Many businesses and householders were affected by flooding in Newton
-0.161 / 11
Stewart after the River Cree overflowed into the town.
-0.034 / 8
First Minister Nicola Sturgeon visited the area
-0.034 / 5
to inspect the damage.
0.051 / 8
The waters breached a retaining wall,
-0.02 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.041 / 5
Jeanette Tate,
-0.02 / 10
who owns the Cinnamon Cafe which was badly affected,
0.078 / 8
said she could not fault the multi-
0.047 / 7
agency response once the flood hit.
0.095 / 3
However,
0.11 / 7
she said more preventative work could
0.139 / 8
have been carried out to ensure the retaining
0.064 / 5
wall did not fail.
0.022 / 10
"It is difficult but I do think there
0.013 / 5
is so much publicity for
0.048 / 3
Dumfries
0.03
and
0.083 / 4
the Nith -
0.086 / 6
and I totally appreciate that -
-0.202 / 14
but it is almost like we're neglected or forgotten," she said.
0.034 / 8
"That may not be true but
0.064 / 11
it is perhaps my perspective over the last few days.
0.231 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.148 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.062 / 10
Peebles was badly hit by problems,
-0.012 / 10
sparking calls to introduce more defences in the area.
-0.145 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.105 / 10
drivers have been urged not to ignore closure signs.
-0.148 / 4
The Labour Party
-0.003 / 5
's deputy Scottish leader Alex
0.019 / 8
Rowley was in Hawick on Monday
-0.053 / 7
to see the situation first hand.
0.073 / 13
He said it was important to get the flood protection plan right
0.075 / 9
but backed calls to speed up the process.
0.084 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.116 / 8
"Obviously it is heart-breaking
0.107 / 11
for people who have been forced out of their homes and
0.154 / 13
the impact on businesses." He said it was important that "
0.158 / 8
immediate steps" were taken to protect
0.088 / 9
the areas most vulnerable and a clear timetable put
0.087 / 7
in place for flood prevention plans.
0.024 / 4
Have you been
-0.136 / 4
affected by flooding in
-0.109 / 3
Dumfries
-0.015 / 3
and Galloway
-0.014
or
-0.013 / 2
the Borders
-0.018
?
0.18 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.02 / 15
uk or dumfries@bbc.co.uk.
-3-4-5-2-10-3.23487-3.23487base value-1.90088-1.90088fThe(inputs)0.231 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.19 The full cost 0.18 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.158 immediate steps" were taken to protect 0.154 the impact on businesses." He said it was important that " 0.148 a flood alert remains in place across the Borders because of the constant rain. 0.143 one of the areas worst affected, is still being assessed. 0.139 have been carried out to ensure the retaining 0.116 "Obviously it is heart-breaking 0.115 Hawick and many roads in Peeblesshire 0.11 she said more preventative work could 0.107 for people who have been forced out of their homes and 0.099 standing water. 0.095 However, 0.092 Repair work is ongoing in 0.089 remain badly affected by 0.088 the areas most vulnerable and a clear timetable put 0.087 in place for flood prevention plans. 0.086 and I totally appreciate that - 0.084 "I was quite taken aback by the amount of damage that has been done," he said. 0.083 the Nith - 0.078 said she could not fault the multi- 0.075 but backed calls to speed up the process. 0.073 He said it was important to get the flood protection plan right 0.064 it is perhaps my perspective over the last few days. 0.064 wall did not fail. 0.058 of damage in Newton Stewart, 0.051 The waters breached a retaining wall, 0.048 Dumfries 0.047 agency response once the flood hit. 0.034 "That may not be true but 0.03 and 0.024 Have you been 0.022 "It is difficult but I do think there 0.019 Rowley was in Hawick on Monday 0.013 is so much publicity for -0.244 to damage at the Lamington Viaduct. -0.205 Trains on the west coast mainline face disruption due -0.202 but it is almost like we're neglected or forgotten," she said. -0.161 Stewart after the River Cree overflowed into the town. -0.148 The Labour Party -0.145 Scottish Borders Council has put a list on its website of the roads worst affected and -0.143 Many businesses and householders were affected by flooding in Newton -0.136 affected by flooding in -0.109 Dumfries -0.105 drivers have been urged not to ignore closure signs. -0.062 Peebles was badly hit by problems, -0.053 to see the situation first hand. -0.041 Jeanette Tate, -0.034 First Minister Nicola Sturgeon visited the area -0.034 to inspect the damage. -0.02 uk or dumfries@bbc.co.uk. -0.02 who owns the Cinnamon Cafe which was badly affected, -0.02 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.018 ? -0.015 and Galloway -0.014 or -0.013 the Borders -0.012 sparking calls to introduce more defences in the area. -0.003 's deputy Scottish leader Alex
inputs
0.19 / 4
The full cost
0.058 / 6
of damage in Newton Stewart,
0.143 / 12
one of the areas worst affected, is still being assessed.
0.092 / 7
Repair work is ongoing in
0.115 / 11
Hawick and many roads in Peeblesshire
0.089 / 4
remain badly affected by
0.099 / 3
standing water.
-0.205 / 11
Trains on the west coast mainline face disruption due
-0.244 / 11
to damage at the Lamington Viaduct.
-0.143 / 12
Many businesses and householders were affected by flooding in Newton
-0.161 / 11
Stewart after the River Cree overflowed into the town.
-0.034 / 8
First Minister Nicola Sturgeon visited the area
-0.034 / 5
to inspect the damage.
0.051 / 8
The waters breached a retaining wall,
-0.02 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.041 / 5
Jeanette Tate,
-0.02 / 10
who owns the Cinnamon Cafe which was badly affected,
0.078 / 8
said she could not fault the multi-
0.047 / 7
agency response once the flood hit.
0.095 / 3
However,
0.11 / 7
she said more preventative work could
0.139 / 8
have been carried out to ensure the retaining
0.064 / 5
wall did not fail.
0.022 / 10
"It is difficult but I do think there
0.013 / 5
is so much publicity for
0.048 / 3
Dumfries
0.03
and
0.083 / 4
the Nith -
0.086 / 6
and I totally appreciate that -
-0.202 / 14
but it is almost like we're neglected or forgotten," she said.
0.034 / 8
"That may not be true but
0.064 / 11
it is perhaps my perspective over the last few days.
0.231 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.148 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.062 / 10
Peebles was badly hit by problems,
-0.012 / 10
sparking calls to introduce more defences in the area.
-0.145 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.105 / 10
drivers have been urged not to ignore closure signs.
-0.148 / 4
The Labour Party
-0.003 / 5
's deputy Scottish leader Alex
0.019 / 8
Rowley was in Hawick on Monday
-0.053 / 7
to see the situation first hand.
0.073 / 13
He said it was important to get the flood protection plan right
0.075 / 9
but backed calls to speed up the process.
0.084 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.116 / 8
"Obviously it is heart-breaking
0.107 / 11
for people who have been forced out of their homes and
0.154 / 13
the impact on businesses." He said it was important that "
0.158 / 8
immediate steps" were taken to protect
0.088 / 9
the areas most vulnerable and a clear timetable put
0.087 / 7
in place for flood prevention plans.
0.024 / 4
Have you been
-0.136 / 4
affected by flooding in
-0.109 / 3
Dumfries
-0.015 / 3
and Galloway
-0.014
or
-0.013 / 2
the Borders
-0.018
?
0.18 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.02 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-9.2257-9.2257base value-3.01603-3.01603fimpact(inputs)0.553 who owns the Cinnamon Cafe which was badly affected, 0.523 's deputy Scottish leader Alex 0.485 Jeanette Tate, 0.452 one of the areas worst affected, is still being assessed. 0.347 to inspect the damage. 0.345 First Minister Nicola Sturgeon visited the area 0.314 remain badly affected by 0.263 but it is almost like we're neglected or forgotten," she said. 0.255 of damage in Newton Stewart, 0.249 Repair work is ongoing in 0.24 The full cost 0.236 Hawick and many roads in Peeblesshire 0.2 "It is difficult but I do think there 0.193 "I was quite taken aback by the amount of damage that has been done," he said. 0.191 The waters breached a retaining wall, 0.185 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.183 Scottish Borders Council has put a list on its website of the roads worst affected and 0.181 to see the situation first hand. 0.18 Many businesses and householders were affected by flooding in Newton 0.178 standing water. 0.171 sparking calls to introduce more defences in the area. 0.156 Rowley was in Hawick on Monday 0.151 agency response once the flood hit. 0.134 the impact on businesses." He said it was important that " 0.13 she said more preventative work could 0.126 affected by flooding in 0.122 He said it was important to get the flood protection plan right 0.118 Peebles was badly hit by problems, 0.113 Stewart after the River Cree overflowed into the town. 0.113 the areas most vulnerable and a clear timetable put 0.113 immediate steps" were taken to protect 0.103 but backed calls to speed up the process. 0.092 wall did not fail. 0.085 in place for flood prevention plans. 0.084 for people who have been forced out of their homes and 0.083 However, 0.08 have been carried out to ensure the retaining 0.076 the Borders 0.069 The Labour Party 0.066 drivers have been urged not to ignore closure signs. 0.065 ? 0.063 and Galloway 0.06 or 0.044 "Obviously it is heart-breaking 0.039 and 0.037 said she could not fault the multi- 0.011 Trains on the west coast mainline face disruption due 0.011 Dumfries 0.011 Dumfries 0.01 Have you been 0.006 to damage at the Lamington Viaduct. -0.463 "That may not be true but -0.441 it is perhaps my perspective over the last few days. -0.389 a flood alert remains in place across the Borders because of the constant rain. -0.352 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.172 the Nith - -0.148 and I totally appreciate that - -0.045 is so much publicity for -0.043 uk or dumfries@bbc.co.uk. -0.029 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
inputs
0.24 / 4
The full cost
0.255 / 6
of damage in Newton Stewart,
0.452 / 12
one of the areas worst affected, is still being assessed.
0.249 / 7
Repair work is ongoing in
0.236 / 11
Hawick and many roads in Peeblesshire
0.314 / 4
remain badly affected by
0.178 / 3
standing water.
0.011 / 11
Trains on the west coast mainline face disruption due
0.006 / 11
to damage at the Lamington Viaduct.
0.18 / 12
Many businesses and householders were affected by flooding in Newton
0.113 / 11
Stewart after the River Cree overflowed into the town.
0.345 / 8
First Minister Nicola Sturgeon visited the area
0.347 / 5
to inspect the damage.
0.191 / 8
The waters breached a retaining wall,
0.185 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.485 / 5
Jeanette Tate,
0.553 / 10
who owns the Cinnamon Cafe which was badly affected,
0.037 / 8
said she could not fault the multi-
0.151 / 7
agency response once the flood hit.
0.083 / 3
However,
0.13 / 7
she said more preventative work could
0.08 / 8
have been carried out to ensure the retaining
0.092 / 5
wall did not fail.
0.2 / 10
"It is difficult but I do think there
-0.045 / 5
is so much publicity for
0.011 / 3
Dumfries
0.039
and
-0.172 / 4
the Nith -
-0.148 / 6
and I totally appreciate that -
0.263 / 14
but it is almost like we're neglected or forgotten," she said.
-0.463 / 8
"That may not be true but
-0.441 / 11
it is perhaps my perspective over the last few days.
-0.352 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.389 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.118 / 10
Peebles was badly hit by problems,
0.171 / 10
sparking calls to introduce more defences in the area.
0.183 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.066 / 10
drivers have been urged not to ignore closure signs.
0.069 / 4
The Labour Party
0.523 / 5
's deputy Scottish leader Alex
0.156 / 8
Rowley was in Hawick on Monday
0.181 / 7
to see the situation first hand.
0.122 / 13
He said it was important to get the flood protection plan right
0.103 / 9
but backed calls to speed up the process.
0.193 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.044 / 8
"Obviously it is heart-breaking
0.084 / 11
for people who have been forced out of their homes and
0.134 / 13
the impact on businesses." He said it was important that "
0.113 / 8
immediate steps" were taken to protect
0.113 / 9
the areas most vulnerable and a clear timetable put
0.085 / 7
in place for flood prevention plans.
0.01 / 4
Have you been
0.126 / 4
affected by flooding in
0.011 / 3
Dumfries
0.063 / 3
and Galloway
0.06
or
0.076 / 2
the Borders
0.065
?
-0.029 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.043 / 15
uk or dumfries@bbc.co.uk.
-6-8-10-4-2-9.2257-9.2257base value-3.01603-3.01603fimpact(inputs)0.553 who owns the Cinnamon Cafe which was badly affected, 0.523 's deputy Scottish leader Alex 0.485 Jeanette Tate, 0.452 one of the areas worst affected, is still being assessed. 0.347 to inspect the damage. 0.345 First Minister Nicola Sturgeon visited the area 0.314 remain badly affected by 0.263 but it is almost like we're neglected or forgotten," she said. 0.255 of damage in Newton Stewart, 0.249 Repair work is ongoing in 0.24 The full cost 0.236 Hawick and many roads in Peeblesshire 0.2 "It is difficult but I do think there 0.193 "I was quite taken aback by the amount of damage that has been done," he said. 0.191 The waters breached a retaining wall, 0.185 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.183 Scottish Borders Council has put a list on its website of the roads worst affected and 0.181 to see the situation first hand. 0.18 Many businesses and householders were affected by flooding in Newton 0.178 standing water. 0.171 sparking calls to introduce more defences in the area. 0.156 Rowley was in Hawick on Monday 0.151 agency response once the flood hit. 0.134 the impact on businesses." He said it was important that " 0.13 she said more preventative work could 0.126 affected by flooding in 0.122 He said it was important to get the flood protection plan right 0.118 Peebles was badly hit by problems, 0.113 Stewart after the River Cree overflowed into the town. 0.113 the areas most vulnerable and a clear timetable put 0.113 immediate steps" were taken to protect 0.103 but backed calls to speed up the process. 0.092 wall did not fail. 0.085 in place for flood prevention plans. 0.084 for people who have been forced out of their homes and 0.083 However, 0.08 have been carried out to ensure the retaining 0.076 the Borders 0.069 The Labour Party 0.066 drivers have been urged not to ignore closure signs. 0.065 ? 0.063 and Galloway 0.06 or 0.044 "Obviously it is heart-breaking 0.039 and 0.037 said she could not fault the multi- 0.011 Trains on the west coast mainline face disruption due 0.011 Dumfries 0.011 Dumfries 0.01 Have you been 0.006 to damage at the Lamington Viaduct. -0.463 "That may not be true but -0.441 it is perhaps my perspective over the last few days. -0.389 a flood alert remains in place across the Borders because of the constant rain. -0.352 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.172 the Nith - -0.148 and I totally appreciate that - -0.045 is so much publicity for -0.043 uk or dumfries@bbc.co.uk. -0.029 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
inputs
0.24 / 4
The full cost
0.255 / 6
of damage in Newton Stewart,
0.452 / 12
one of the areas worst affected, is still being assessed.
0.249 / 7
Repair work is ongoing in
0.236 / 11
Hawick and many roads in Peeblesshire
0.314 / 4
remain badly affected by
0.178 / 3
standing water.
0.011 / 11
Trains on the west coast mainline face disruption due
0.006 / 11
to damage at the Lamington Viaduct.
0.18 / 12
Many businesses and householders were affected by flooding in Newton
0.113 / 11
Stewart after the River Cree overflowed into the town.
0.345 / 8
First Minister Nicola Sturgeon visited the area
0.347 / 5
to inspect the damage.
0.191 / 8
The waters breached a retaining wall,
0.185 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.485 / 5
Jeanette Tate,
0.553 / 10
who owns the Cinnamon Cafe which was badly affected,
0.037 / 8
said she could not fault the multi-
0.151 / 7
agency response once the flood hit.
0.083 / 3
However,
0.13 / 7
she said more preventative work could
0.08 / 8
have been carried out to ensure the retaining
0.092 / 5
wall did not fail.
0.2 / 10
"It is difficult but I do think there
-0.045 / 5
is so much publicity for
0.011 / 3
Dumfries
0.039
and
-0.172 / 4
the Nith -
-0.148 / 6
and I totally appreciate that -
0.263 / 14
but it is almost like we're neglected or forgotten," she said.
-0.463 / 8
"That may not be true but
-0.441 / 11
it is perhaps my perspective over the last few days.
-0.352 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.389 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.118 / 10
Peebles was badly hit by problems,
0.171 / 10
sparking calls to introduce more defences in the area.
0.183 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.066 / 10
drivers have been urged not to ignore closure signs.
0.069 / 4
The Labour Party
0.523 / 5
's deputy Scottish leader Alex
0.156 / 8
Rowley was in Hawick on Monday
0.181 / 7
to see the situation first hand.
0.122 / 13
He said it was important to get the flood protection plan right
0.103 / 9
but backed calls to speed up the process.
0.193 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.044 / 8
"Obviously it is heart-breaking
0.084 / 11
for people who have been forced out of their homes and
0.134 / 13
the impact on businesses." He said it was important that "
0.113 / 8
immediate steps" were taken to protect
0.113 / 9
the areas most vulnerable and a clear timetable put
0.085 / 7
in place for flood prevention plans.
0.01 / 4
Have you been
0.126 / 4
affected by flooding in
0.011 / 3
Dumfries
0.063 / 3
and Galloway
0.06
or
0.076 / 2
the Borders
0.065
?
-0.029 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.043 / 15
uk or dumfries@bbc.co.uk.
-3-6-9030.7008670.700867base value2.411312.41131fof(inputs)0.109 but it is almost like we're neglected or forgotten," she said. 0.092 "I was quite taken aback by the amount of damage that has been done," he said. 0.088 He said it was important to get the flood protection plan right 0.087 agency response once the flood hit. 0.081 one of the areas worst affected, is still being assessed. 0.079 affected by flooding in 0.073 in place for flood prevention plans. 0.071 who owns the Cinnamon Cafe which was badly affected, 0.068 of damage in Newton Stewart, 0.067 a flood alert remains in place across the Borders because of the constant rain. 0.063 but backed calls to speed up the process. 0.058 sparking calls to introduce more defences in the area. 0.056 Dumfries 0.051 said she could not fault the multi- 0.043 Peebles was badly hit by problems, 0.042 Have you been 0.042 Jeanette Tate, 0.041 Many businesses and householders were affected by flooding in Newton 0.041 The waters breached a retaining wall, 0.039 "That may not be true but 0.039 it is perhaps my perspective over the last few days. 0.039 to inspect the damage. 0.039 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.038 for people who have been forced out of their homes and 0.038 the areas most vulnerable and a clear timetable put 0.037 "Obviously it is heart-breaking 0.035 uk or dumfries@bbc.co.uk. 0.032 Scottish Borders Council has put a list on its website of the roads worst affected and 0.032 drivers have been urged not to ignore closure signs. 0.032 First Minister Nicola Sturgeon visited the area 0.031 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.029 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.027 The full cost 0.025 to see the situation first hand. 0.019 Dumfries 0.017 the Nith - 0.016 and I totally appreciate that - 0.016 remain badly affected by 0.015 Stewart after the River Cree overflowed into the town. 0.014 wall did not fail. 0.014 have been carried out to ensure the retaining 0.013 she said more preventative work could 0.012 Rowley was in Hawick on Monday 0.012 standing water. 0.01 the Borders 0.01 ? 0.007 and 0.005 and Galloway 0.005 or 0.004 Hawick and many roads in Peeblesshire 0.001 Repair work is ongoing in -0.057 the impact on businesses." He said it was important that " -0.053 to damage at the Lamington Viaduct. -0.052 Trains on the west coast mainline face disruption due -0.029 immediate steps" were taken to protect -0.021 "It is difficult but I do think there -0.013 's deputy Scottish leader Alex -0.007 is so much publicity for -0.006 The Labour Party -0.001 However,
inputs
0.027 / 4
The full cost
0.068 / 6
of damage in Newton Stewart,
0.081 / 12
one of the areas worst affected, is still being assessed.
0.001 / 7
Repair work is ongoing in
0.004 / 11
Hawick and many roads in Peeblesshire
0.016 / 4
remain badly affected by
0.012 / 3
standing water.
-0.052 / 11
Trains on the west coast mainline face disruption due
-0.053 / 11
to damage at the Lamington Viaduct.
0.041 / 12
Many businesses and householders were affected by flooding in Newton
0.015 / 11
Stewart after the River Cree overflowed into the town.
0.032 / 8
First Minister Nicola Sturgeon visited the area
0.039 / 5
to inspect the damage.
0.041 / 8
The waters breached a retaining wall,
0.031 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.042 / 5
Jeanette Tate,
0.071 / 10
who owns the Cinnamon Cafe which was badly affected,
0.051 / 8
said she could not fault the multi-
0.087 / 7
agency response once the flood hit.
-0.001 / 3
However,
0.013 / 7
she said more preventative work could
0.014 / 8
have been carried out to ensure the retaining
0.014 / 5
wall did not fail.
-0.021 / 10
"It is difficult but I do think there
-0.007 / 5
is so much publicity for
0.019 / 3
Dumfries
0.007
and
0.017 / 4
the Nith -
0.016 / 6
and I totally appreciate that -
0.109 / 14
but it is almost like we're neglected or forgotten," she said.
0.039 / 8
"That may not be true but
0.039 / 11
it is perhaps my perspective over the last few days.
0.039 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.067 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.043 / 10
Peebles was badly hit by problems,
0.058 / 10
sparking calls to introduce more defences in the area.
0.032 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.032 / 10
drivers have been urged not to ignore closure signs.
-0.006 / 4
The Labour Party
-0.013 / 5
's deputy Scottish leader Alex
0.012 / 8
Rowley was in Hawick on Monday
0.025 / 7
to see the situation first hand.
0.088 / 13
He said it was important to get the flood protection plan right
0.063 / 9
but backed calls to speed up the process.
0.092 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.037 / 8
"Obviously it is heart-breaking
0.038 / 11
for people who have been forced out of their homes and
-0.057 / 13
the impact on businesses." He said it was important that "
-0.029 / 8
immediate steps" were taken to protect
0.038 / 9
the areas most vulnerable and a clear timetable put
0.073 / 7
in place for flood prevention plans.
0.042 / 4
Have you been
0.079 / 4
affected by flooding in
0.056 / 3
Dumfries
0.005 / 3
and Galloway
0.005
or
0.01 / 2
the Borders
0.01
?
0.029 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.035 / 15
uk or dumfries@bbc.co.uk.
1.61.20.822.40.7008670.700867base value2.411312.41131fof(inputs)0.109 but it is almost like we're neglected or forgotten," she said. 0.092 "I was quite taken aback by the amount of damage that has been done," he said. 0.088 He said it was important to get the flood protection plan right 0.087 agency response once the flood hit. 0.081 one of the areas worst affected, is still being assessed. 0.079 affected by flooding in 0.073 in place for flood prevention plans. 0.071 who owns the Cinnamon Cafe which was badly affected, 0.068 of damage in Newton Stewart, 0.067 a flood alert remains in place across the Borders because of the constant rain. 0.063 but backed calls to speed up the process. 0.058 sparking calls to introduce more defences in the area. 0.056 Dumfries 0.051 said she could not fault the multi- 0.043 Peebles was badly hit by problems, 0.042 Have you been 0.042 Jeanette Tate, 0.041 Many businesses and householders were affected by flooding in Newton 0.041 The waters breached a retaining wall, 0.039 "That may not be true but 0.039 it is perhaps my perspective over the last few days. 0.039 to inspect the damage. 0.039 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.038 for people who have been forced out of their homes and 0.038 the areas most vulnerable and a clear timetable put 0.037 "Obviously it is heart-breaking 0.035 uk or dumfries@bbc.co.uk. 0.032 Scottish Borders Council has put a list on its website of the roads worst affected and 0.032 drivers have been urged not to ignore closure signs. 0.032 First Minister Nicola Sturgeon visited the area 0.031 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.029 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.027 The full cost 0.025 to see the situation first hand. 0.019 Dumfries 0.017 the Nith - 0.016 and I totally appreciate that - 0.016 remain badly affected by 0.015 Stewart after the River Cree overflowed into the town. 0.014 wall did not fail. 0.014 have been carried out to ensure the retaining 0.013 she said more preventative work could 0.012 Rowley was in Hawick on Monday 0.012 standing water. 0.01 the Borders 0.01 ? 0.007 and 0.005 and Galloway 0.005 or 0.004 Hawick and many roads in Peeblesshire 0.001 Repair work is ongoing in -0.057 the impact on businesses." He said it was important that " -0.053 to damage at the Lamington Viaduct. -0.052 Trains on the west coast mainline face disruption due -0.029 immediate steps" were taken to protect -0.021 "It is difficult but I do think there -0.013 's deputy Scottish leader Alex -0.007 is so much publicity for -0.006 The Labour Party -0.001 However,
inputs
0.027 / 4
The full cost
0.068 / 6
of damage in Newton Stewart,
0.081 / 12
one of the areas worst affected, is still being assessed.
0.001 / 7
Repair work is ongoing in
0.004 / 11
Hawick and many roads in Peeblesshire
0.016 / 4
remain badly affected by
0.012 / 3
standing water.
-0.052 / 11
Trains on the west coast mainline face disruption due
-0.053 / 11
to damage at the Lamington Viaduct.
0.041 / 12
Many businesses and householders were affected by flooding in Newton
0.015 / 11
Stewart after the River Cree overflowed into the town.
0.032 / 8
First Minister Nicola Sturgeon visited the area
0.039 / 5
to inspect the damage.
0.041 / 8
The waters breached a retaining wall,
0.031 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.042 / 5
Jeanette Tate,
0.071 / 10
who owns the Cinnamon Cafe which was badly affected,
0.051 / 8
said she could not fault the multi-
0.087 / 7
agency response once the flood hit.
-0.001 / 3
However,
0.013 / 7
she said more preventative work could
0.014 / 8
have been carried out to ensure the retaining
0.014 / 5
wall did not fail.
-0.021 / 10
"It is difficult but I do think there
-0.007 / 5
is so much publicity for
0.019 / 3
Dumfries
0.007
and
0.017 / 4
the Nith -
0.016 / 6
and I totally appreciate that -
0.109 / 14
but it is almost like we're neglected or forgotten," she said.
0.039 / 8
"That may not be true but
0.039 / 11
it is perhaps my perspective over the last few days.
0.039 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.067 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.043 / 10
Peebles was badly hit by problems,
0.058 / 10
sparking calls to introduce more defences in the area.
0.032 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.032 / 10
drivers have been urged not to ignore closure signs.
-0.006 / 4
The Labour Party
-0.013 / 5
's deputy Scottish leader Alex
0.012 / 8
Rowley was in Hawick on Monday
0.025 / 7
to see the situation first hand.
0.088 / 13
He said it was important to get the flood protection plan right
0.063 / 9
but backed calls to speed up the process.
0.092 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.037 / 8
"Obviously it is heart-breaking
0.038 / 11
for people who have been forced out of their homes and
-0.057 / 13
the impact on businesses." He said it was important that "
-0.029 / 8
immediate steps" were taken to protect
0.038 / 9
the areas most vulnerable and a clear timetable put
0.073 / 7
in place for flood prevention plans.
0.042 / 4
Have you been
0.079 / 4
affected by flooding in
0.056 / 3
Dumfries
0.005 / 3
and Galloway
0.005
or
0.01 / 2
the Borders
0.01
?
0.029 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.035 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-7.94387-7.94387base value-0.0727792-0.0727792fflooding(inputs)0.728 agency response once the flood hit. 0.666 affected by flooding in 0.567 in place for flood prevention plans. 0.474 Dumfries 0.355 He said it was important to get the flood protection plan right 0.346 Stewart after the River Cree overflowed into the town. 0.301 Many businesses and householders were affected by flooding in Newton 0.278 said she could not fault the multi- 0.276 to see the situation first hand. 0.269 who owns the Cinnamon Cafe which was badly affected, 0.217 Trains on the west coast mainline face disruption due 0.211 Have you been 0.209 to damage at the Lamington Viaduct. 0.202 the areas most vulnerable and a clear timetable put 0.189 standing water. 0.158 she said more preventative work could 0.154 of damage in Newton Stewart, 0.152 the impact on businesses." He said it was important that " 0.151 Repair work is ongoing in 0.147 Rowley was in Hawick on Monday 0.146 remain badly affected by 0.146 Scottish Borders Council has put a list on its website of the roads worst affected and 0.144 for people who have been forced out of their homes and 0.142 Hawick and many roads in Peeblesshire 0.137 "Obviously it is heart-breaking 0.13 have been carried out to ensure the retaining 0.127 Peebles was badly hit by problems, 0.112 but backed calls to speed up the process. 0.107 but it is almost like we're neglected or forgotten," she said. 0.107 drivers have been urged not to ignore closure signs. 0.105 Jeanette Tate, 0.105 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.098 immediate steps" were taken to protect 0.091 one of the areas worst affected, is still being assessed. 0.091 The waters breached a retaining wall, 0.082 sparking calls to introduce more defences in the area. 0.078 wall did not fail. 0.067 Dumfries 0.049 and 0.034 "I was quite taken aback by the amount of damage that has been done," he said. 0.034 First Minister Nicola Sturgeon visited the area 0.03 ? 0.03 the Borders 0.02 The full cost 0.017 is so much publicity for 0.015 uk or dumfries@bbc.co.uk. 0.004 's deputy Scottish leader Alex 0.001 "It is difficult but I do think there -0.165 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.055 it is perhaps my perspective over the last few days. -0.052 "That may not be true but -0.039 the Nith - -0.036 and I totally appreciate that - -0.026 The Labour Party -0.014 However, -0.011 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.01 or -0.01 and Galloway -0.006 a flood alert remains in place across the Borders because of the constant rain. -0.001 to inspect the damage.
inputs
0.02 / 4
The full cost
0.154 / 6
of damage in Newton Stewart,
0.091 / 12
one of the areas worst affected, is still being assessed.
0.151 / 7
Repair work is ongoing in
0.142 / 11
Hawick and many roads in Peeblesshire
0.146 / 4
remain badly affected by
0.189 / 3
standing water.
0.217 / 11
Trains on the west coast mainline face disruption due
0.209 / 11
to damage at the Lamington Viaduct.
0.301 / 12
Many businesses and householders were affected by flooding in Newton
0.346 / 11
Stewart after the River Cree overflowed into the town.
0.034 / 8
First Minister Nicola Sturgeon visited the area
-0.001 / 5
to inspect the damage.
0.091 / 8
The waters breached a retaining wall,
0.105 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.105 / 5
Jeanette Tate,
0.269 / 10
who owns the Cinnamon Cafe which was badly affected,
0.278 / 8
said she could not fault the multi-
0.728 / 7
agency response once the flood hit.
-0.014 / 3
However,
0.158 / 7
she said more preventative work could
0.13 / 8
have been carried out to ensure the retaining
0.078 / 5
wall did not fail.
0.001 / 10
"It is difficult but I do think there
0.017 / 5
is so much publicity for
0.067 / 3
Dumfries
0.049
and
-0.039 / 4
the Nith -
-0.036 / 6
and I totally appreciate that -
0.107 / 14
but it is almost like we're neglected or forgotten," she said.
-0.052 / 8
"That may not be true but
-0.055 / 11
it is perhaps my perspective over the last few days.
-0.165 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.006 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.127 / 10
Peebles was badly hit by problems,
0.082 / 10
sparking calls to introduce more defences in the area.
0.146 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.107 / 10
drivers have been urged not to ignore closure signs.
-0.026 / 4
The Labour Party
0.004 / 5
's deputy Scottish leader Alex
0.147 / 8
Rowley was in Hawick on Monday
0.276 / 7
to see the situation first hand.
0.355 / 13
He said it was important to get the flood protection plan right
0.112 / 9
but backed calls to speed up the process.
0.034 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.137 / 8
"Obviously it is heart-breaking
0.144 / 11
for people who have been forced out of their homes and
0.152 / 13
the impact on businesses." He said it was important that "
0.098 / 8
immediate steps" were taken to protect
0.202 / 9
the areas most vulnerable and a clear timetable put
0.567 / 7
in place for flood prevention plans.
0.211 / 4
Have you been
0.666 / 4
affected by flooding in
0.474 / 3
Dumfries
-0.01 / 3
and Galloway
-0.01
or
0.03 / 2
the Borders
0.03
?
-0.011 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.015 / 15
uk or dumfries@bbc.co.uk.
-4-6-8-20-7.94387-7.94387base value-0.0727792-0.0727792fflooding(inputs)0.728 agency response once the flood hit. 0.666 affected by flooding in 0.567 in place for flood prevention plans. 0.474 Dumfries 0.355 He said it was important to get the flood protection plan right 0.346 Stewart after the River Cree overflowed into the town. 0.301 Many businesses and householders were affected by flooding in Newton 0.278 said she could not fault the multi- 0.276 to see the situation first hand. 0.269 who owns the Cinnamon Cafe which was badly affected, 0.217 Trains on the west coast mainline face disruption due 0.211 Have you been 0.209 to damage at the Lamington Viaduct. 0.202 the areas most vulnerable and a clear timetable put 0.189 standing water. 0.158 she said more preventative work could 0.154 of damage in Newton Stewart, 0.152 the impact on businesses." He said it was important that " 0.151 Repair work is ongoing in 0.147 Rowley was in Hawick on Monday 0.146 remain badly affected by 0.146 Scottish Borders Council has put a list on its website of the roads worst affected and 0.144 for people who have been forced out of their homes and 0.142 Hawick and many roads in Peeblesshire 0.137 "Obviously it is heart-breaking 0.13 have been carried out to ensure the retaining 0.127 Peebles was badly hit by problems, 0.112 but backed calls to speed up the process. 0.107 but it is almost like we're neglected or forgotten," she said. 0.107 drivers have been urged not to ignore closure signs. 0.105 Jeanette Tate, 0.105 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.098 immediate steps" were taken to protect 0.091 one of the areas worst affected, is still being assessed. 0.091 The waters breached a retaining wall, 0.082 sparking calls to introduce more defences in the area. 0.078 wall did not fail. 0.067 Dumfries 0.049 and 0.034 "I was quite taken aback by the amount of damage that has been done," he said. 0.034 First Minister Nicola Sturgeon visited the area 0.03 ? 0.03 the Borders 0.02 The full cost 0.017 is so much publicity for 0.015 uk or dumfries@bbc.co.uk. 0.004 's deputy Scottish leader Alex 0.001 "It is difficult but I do think there -0.165 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.055 it is perhaps my perspective over the last few days. -0.052 "That may not be true but -0.039 the Nith - -0.036 and I totally appreciate that - -0.026 The Labour Party -0.014 However, -0.011 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.01 or -0.01 and Galloway -0.006 a flood alert remains in place across the Borders because of the constant rain. -0.001 to inspect the damage.
inputs
0.02 / 4
The full cost
0.154 / 6
of damage in Newton Stewart,
0.091 / 12
one of the areas worst affected, is still being assessed.
0.151 / 7
Repair work is ongoing in
0.142 / 11
Hawick and many roads in Peeblesshire
0.146 / 4
remain badly affected by
0.189 / 3
standing water.
0.217 / 11
Trains on the west coast mainline face disruption due
0.209 / 11
to damage at the Lamington Viaduct.
0.301 / 12
Many businesses and householders were affected by flooding in Newton
0.346 / 11
Stewart after the River Cree overflowed into the town.
0.034 / 8
First Minister Nicola Sturgeon visited the area
-0.001 / 5
to inspect the damage.
0.091 / 8
The waters breached a retaining wall,
0.105 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.105 / 5
Jeanette Tate,
0.269 / 10
who owns the Cinnamon Cafe which was badly affected,
0.278 / 8
said she could not fault the multi-
0.728 / 7
agency response once the flood hit.
-0.014 / 3
However,
0.158 / 7
she said more preventative work could
0.13 / 8
have been carried out to ensure the retaining
0.078 / 5
wall did not fail.
0.001 / 10
"It is difficult but I do think there
0.017 / 5
is so much publicity for
0.067 / 3
Dumfries
0.049
and
-0.039 / 4
the Nith -
-0.036 / 6
and I totally appreciate that -
0.107 / 14
but it is almost like we're neglected or forgotten," she said.
-0.052 / 8
"That may not be true but
-0.055 / 11
it is perhaps my perspective over the last few days.
-0.165 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.006 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.127 / 10
Peebles was badly hit by problems,
0.082 / 10
sparking calls to introduce more defences in the area.
0.146 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.107 / 10
drivers have been urged not to ignore closure signs.
-0.026 / 4
The Labour Party
0.004 / 5
's deputy Scottish leader Alex
0.147 / 8
Rowley was in Hawick on Monday
0.276 / 7
to see the situation first hand.
0.355 / 13
He said it was important to get the flood protection plan right
0.112 / 9
but backed calls to speed up the process.
0.034 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.137 / 8
"Obviously it is heart-breaking
0.144 / 11
for people who have been forced out of their homes and
0.152 / 13
the impact on businesses." He said it was important that "
0.098 / 8
immediate steps" were taken to protect
0.202 / 9
the areas most vulnerable and a clear timetable put
0.567 / 7
in place for flood prevention plans.
0.211 / 4
Have you been
0.666 / 4
affected by flooding in
0.474 / 3
Dumfries
-0.01 / 3
and Galloway
-0.01
or
0.03 / 2
the Borders
0.03
?
-0.011 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.015 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-1.31228-1.31228base value0.2512390.251239fin(inputs)0.169 agency response once the flood hit. 0.13 who owns the Cinnamon Cafe which was badly affected, 0.126 "I was quite taken aback by the amount of damage that has been done," he said. 0.116 said she could not fault the multi- 0.114 but it is almost like we're neglected or forgotten," she said. 0.105 affected by flooding in 0.104 "Obviously it is heart-breaking 0.092 Jeanette Tate, 0.092 Have you been 0.09 for people who have been forced out of their homes and 0.089 He said it was important to get the flood protection plan right 0.088 one of the areas worst affected, is still being assessed. 0.081 The waters breached a retaining wall, 0.077 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.069 remain badly affected by 0.064 immediate steps" were taken to protect 0.063 Many businesses and householders were affected by flooding in Newton 0.062 but backed calls to speed up the process. 0.06 Dumfries 0.047 the impact on businesses." He said it was important that " 0.043 uk or dumfries@bbc.co.uk. 0.036 The full cost 0.032 is so much publicity for 0.031 "It is difficult but I do think there 0.023 sparking calls to introduce more defences in the area. 0.021 's deputy Scottish leader Alex 0.02 standing water. 0.019 Stewart after the River Cree overflowed into the town. 0.014 to inspect the damage. 0.011 of damage in Newton Stewart, 0.01 she said more preventative work could 0.009 and Galloway 0.008 Repair work is ongoing in 0.008 or 0.007 However, 0.007 The Labour Party 0.006 ? 0.004 in place for flood prevention plans. 0.002 and 0.001 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.001 the Borders -0.072 wall did not fail. -0.058 Trains on the west coast mainline face disruption due -0.056 drivers have been urged not to ignore closure signs. -0.052 to damage at the Lamington Viaduct. -0.049 Hawick and many roads in Peeblesshire -0.049 Rowley was in Hawick on Monday -0.041 Scottish Borders Council has put a list on its website of the roads worst affected and -0.04 the Nith - -0.033 have been carried out to ensure the retaining -0.031 to see the situation first hand. -0.021 and I totally appreciate that - -0.019 it is perhaps my perspective over the last few days. -0.019 the areas most vulnerable and a clear timetable put -0.018 Dumfries -0.014 "That may not be true but -0.006 a flood alert remains in place across the Borders because of the constant rain. -0.006 Peebles was badly hit by problems, -0.001 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.0 First Minister Nicola Sturgeon visited the area
inputs
0.036 / 4
The full cost
0.011 / 6
of damage in Newton Stewart,
0.088 / 12
one of the areas worst affected, is still being assessed.
0.008 / 7
Repair work is ongoing in
-0.049 / 11
Hawick and many roads in Peeblesshire
0.069 / 4
remain badly affected by
0.02 / 3
standing water.
-0.058 / 11
Trains on the west coast mainline face disruption due
-0.052 / 11
to damage at the Lamington Viaduct.
0.063 / 12
Many businesses and householders were affected by flooding in Newton
0.019 / 11
Stewart after the River Cree overflowed into the town.
-0.0 / 8
First Minister Nicola Sturgeon visited the area
0.014 / 5
to inspect the damage.
0.081 / 8
The waters breached a retaining wall,
0.077 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.092 / 5
Jeanette Tate,
0.13 / 10
who owns the Cinnamon Cafe which was badly affected,
0.116 / 8
said she could not fault the multi-
0.169 / 7
agency response once the flood hit.
0.007 / 3
However,
0.01 / 7
she said more preventative work could
-0.033 / 8
have been carried out to ensure the retaining
-0.072 / 5
wall did not fail.
0.031 / 10
"It is difficult but I do think there
0.032 / 5
is so much publicity for
-0.018 / 3
Dumfries
0.002
and
-0.04 / 4
the Nith -
-0.021 / 6
and I totally appreciate that -
0.114 / 14
but it is almost like we're neglected or forgotten," she said.
-0.014 / 8
"That may not be true but
-0.019 / 11
it is perhaps my perspective over the last few days.
0.001 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.006 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.006 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.041 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.056 / 10
drivers have been urged not to ignore closure signs.
0.007 / 4
The Labour Party
0.021 / 5
's deputy Scottish leader Alex
-0.049 / 8
Rowley was in Hawick on Monday
-0.031 / 7
to see the situation first hand.
0.089 / 13
He said it was important to get the flood protection plan right
0.062 / 9
but backed calls to speed up the process.
0.126 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.104 / 8
"Obviously it is heart-breaking
0.09 / 11
for people who have been forced out of their homes and
0.047 / 13
the impact on businesses." He said it was important that "
0.064 / 8
immediate steps" were taken to protect
-0.019 / 9
the areas most vulnerable and a clear timetable put
0.004 / 7
in place for flood prevention plans.
0.092 / 4
Have you been
0.105 / 4
affected by flooding in
0.06 / 3
Dumfries
0.009 / 3
and Galloway
0.008
or
0.001 / 2
the Borders
0.006
?
-0.001 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.043 / 15
uk or dumfries@bbc.co.uk.
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1.31228-1.31228base value0.2512390.251239fin(inputs)0.169 agency response once the flood hit. 0.13 who owns the Cinnamon Cafe which was badly affected, 0.126 "I was quite taken aback by the amount of damage that has been done," he said. 0.116 said she could not fault the multi- 0.114 but it is almost like we're neglected or forgotten," she said. 0.105 affected by flooding in 0.104 "Obviously it is heart-breaking 0.092 Jeanette Tate, 0.092 Have you been 0.09 for people who have been forced out of their homes and 0.089 He said it was important to get the flood protection plan right 0.088 one of the areas worst affected, is still being assessed. 0.081 The waters breached a retaining wall, 0.077 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.069 remain badly affected by 0.064 immediate steps" were taken to protect 0.063 Many businesses and householders were affected by flooding in Newton 0.062 but backed calls to speed up the process. 0.06 Dumfries 0.047 the impact on businesses." He said it was important that " 0.043 uk or dumfries@bbc.co.uk. 0.036 The full cost 0.032 is so much publicity for 0.031 "It is difficult but I do think there 0.023 sparking calls to introduce more defences in the area. 0.021 's deputy Scottish leader Alex 0.02 standing water. 0.019 Stewart after the River Cree overflowed into the town. 0.014 to inspect the damage. 0.011 of damage in Newton Stewart, 0.01 she said more preventative work could 0.009 and Galloway 0.008 Repair work is ongoing in 0.008 or 0.007 However, 0.007 The Labour Party 0.006 ? 0.004 in place for flood prevention plans. 0.002 and 0.001 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.001 the Borders -0.072 wall did not fail. -0.058 Trains on the west coast mainline face disruption due -0.056 drivers have been urged not to ignore closure signs. -0.052 to damage at the Lamington Viaduct. -0.049 Hawick and many roads in Peeblesshire -0.049 Rowley was in Hawick on Monday -0.041 Scottish Borders Council has put a list on its website of the roads worst affected and -0.04 the Nith - -0.033 have been carried out to ensure the retaining -0.031 to see the situation first hand. -0.021 and I totally appreciate that - -0.019 it is perhaps my perspective over the last few days. -0.019 the areas most vulnerable and a clear timetable put -0.018 Dumfries -0.014 "That may not be true but -0.006 a flood alert remains in place across the Borders because of the constant rain. -0.006 Peebles was badly hit by problems, -0.001 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.0 First Minister Nicola Sturgeon visited the area
inputs
0.036 / 4
The full cost
0.011 / 6
of damage in Newton Stewart,
0.088 / 12
one of the areas worst affected, is still being assessed.
0.008 / 7
Repair work is ongoing in
-0.049 / 11
Hawick and many roads in Peeblesshire
0.069 / 4
remain badly affected by
0.02 / 3
standing water.
-0.058 / 11
Trains on the west coast mainline face disruption due
-0.052 / 11
to damage at the Lamington Viaduct.
0.063 / 12
Many businesses and householders were affected by flooding in Newton
0.019 / 11
Stewart after the River Cree overflowed into the town.
-0.0 / 8
First Minister Nicola Sturgeon visited the area
0.014 / 5
to inspect the damage.
0.081 / 8
The waters breached a retaining wall,
0.077 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.092 / 5
Jeanette Tate,
0.13 / 10
who owns the Cinnamon Cafe which was badly affected,
0.116 / 8
said she could not fault the multi-
0.169 / 7
agency response once the flood hit.
0.007 / 3
However,
0.01 / 7
she said more preventative work could
-0.033 / 8
have been carried out to ensure the retaining
-0.072 / 5
wall did not fail.
0.031 / 10
"It is difficult but I do think there
0.032 / 5
is so much publicity for
-0.018 / 3
Dumfries
0.002
and
-0.04 / 4
the Nith -
-0.021 / 6
and I totally appreciate that -
0.114 / 14
but it is almost like we're neglected or forgotten," she said.
-0.014 / 8
"That may not be true but
-0.019 / 11
it is perhaps my perspective over the last few days.
0.001 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.006 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.006 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.041 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.056 / 10
drivers have been urged not to ignore closure signs.
0.007 / 4
The Labour Party
0.021 / 5
's deputy Scottish leader Alex
-0.049 / 8
Rowley was in Hawick on Monday
-0.031 / 7
to see the situation first hand.
0.089 / 13
He said it was important to get the flood protection plan right
0.062 / 9
but backed calls to speed up the process.
0.126 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.104 / 8
"Obviously it is heart-breaking
0.09 / 11
for people who have been forced out of their homes and
0.047 / 13
the impact on businesses." He said it was important that "
0.064 / 8
immediate steps" were taken to protect
-0.019 / 9
the areas most vulnerable and a clear timetable put
0.004 / 7
in place for flood prevention plans.
0.092 / 4
Have you been
0.105 / 4
affected by flooding in
0.06 / 3
Dumfries
0.009 / 3
and Galloway
0.008
or
0.001 / 2
the Borders
0.006
?
-0.001 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.043 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-8.89795-8.89795base value1.901581.90158fDum(inputs)2.123 Dumfries 1.402 and 1.344 Dumfries 1.124 affected by flooding in 1.101 is so much publicity for 0.742 uk or dumfries@bbc.co.uk. 0.479 Have you been 0.46 a flood alert remains in place across the Borders because of the constant rain. 0.45 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.398 in place for flood prevention plans. 0.296 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.272 to damage at the Lamington Viaduct. 0.269 Trains on the west coast mainline face disruption due 0.268 and Galloway 0.26 or 0.24 of damage in Newton Stewart, 0.24 First Minister Nicola Sturgeon visited the area 0.213 the impact on businesses." He said it was important that " 0.195 immediate steps" were taken to protect 0.191 He said it was important to get the flood protection plan right 0.185 who owns the Cinnamon Cafe which was badly affected, 0.179 the areas most vulnerable and a clear timetable put 0.137 Jeanette Tate, 0.129 agency response once the flood hit. 0.111 have been carried out to ensure the retaining 0.106 Many businesses and householders were affected by flooding in Newton 0.093 said she could not fault the multi- 0.075 ? 0.07 she said more preventative work could 0.065 "Obviously it is heart-breaking 0.061 "It is difficult but I do think there 0.06 However, 0.056 but backed calls to speed up the process. 0.056 the Borders 0.038 Stewart after the River Cree overflowed into the town. 0.029 to inspect the damage. 0.026 it is perhaps my perspective over the last few days. 0.026 for people who have been forced out of their homes and 0.021 and I totally appreciate that - 0.015 Peebles was badly hit by problems, 0.014 "That may not be true but 0.011 the Nith - -0.41 Repair work is ongoing in -0.339 to see the situation first hand. -0.316 Scottish Borders Council has put a list on its website of the roads worst affected and -0.282 drivers have been urged not to ignore closure signs. -0.257 Hawick and many roads in Peeblesshire -0.176 remain badly affected by -0.168 one of the areas worst affected, is still being assessed. -0.161 standing water. -0.123 Rowley was in Hawick on Monday -0.108 "I was quite taken aback by the amount of damage that has been done," he said. -0.09 sparking calls to introduce more defences in the area. -0.09 The Labour Party -0.075 The full cost -0.074 The waters breached a retaining wall, -0.073 's deputy Scottish leader Alex -0.048 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.03 but it is almost like we're neglected or forgotten," she said. -0.011 wall did not fail.
inputs
-0.075 / 4
The full cost
0.24 / 6
of damage in Newton Stewart,
-0.168 / 12
one of the areas worst affected, is still being assessed.
-0.41 / 7
Repair work is ongoing in
-0.257 / 11
Hawick and many roads in Peeblesshire
-0.176 / 4
remain badly affected by
-0.161 / 3
standing water.
0.269 / 11
Trains on the west coast mainline face disruption due
0.272 / 11
to damage at the Lamington Viaduct.
0.106 / 12
Many businesses and householders were affected by flooding in Newton
0.038 / 11
Stewart after the River Cree overflowed into the town.
0.24 / 8
First Minister Nicola Sturgeon visited the area
0.029 / 5
to inspect the damage.
-0.074 / 8
The waters breached a retaining wall,
-0.048 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.137 / 5
Jeanette Tate,
0.185 / 10
who owns the Cinnamon Cafe which was badly affected,
0.093 / 8
said she could not fault the multi-
0.129 / 7
agency response once the flood hit.
0.06 / 3
However,
0.07 / 7
she said more preventative work could
0.111 / 8
have been carried out to ensure the retaining
-0.011 / 5
wall did not fail.
0.061 / 10
"It is difficult but I do think there
1.101 / 5
is so much publicity for
2.123 / 3
Dumfries
1.402
and
0.011 / 4
the Nith -
0.021 / 6
and I totally appreciate that -
-0.03 / 14
but it is almost like we're neglected or forgotten," she said.
0.014 / 8
"That may not be true but
0.026 / 11
it is perhaps my perspective over the last few days.
0.296 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.46 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.015 / 10
Peebles was badly hit by problems,
-0.09 / 10
sparking calls to introduce more defences in the area.
-0.316 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.282 / 10
drivers have been urged not to ignore closure signs.
-0.09 / 4
The Labour Party
-0.073 / 5
's deputy Scottish leader Alex
-0.123 / 8
Rowley was in Hawick on Monday
-0.339 / 7
to see the situation first hand.
0.191 / 13
He said it was important to get the flood protection plan right
0.056 / 9
but backed calls to speed up the process.
-0.108 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.065 / 8
"Obviously it is heart-breaking
0.026 / 11
for people who have been forced out of their homes and
0.213 / 13
the impact on businesses." He said it was important that "
0.195 / 8
immediate steps" were taken to protect
0.179 / 9
the areas most vulnerable and a clear timetable put
0.398 / 7
in place for flood prevention plans.
0.479 / 4
Have you been
1.124 / 4
affected by flooding in
1.344 / 3
Dumfries
0.268 / 3
and Galloway
0.26
or
0.056 / 2
the Borders
0.075
?
0.45 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.742 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-8.89795-8.89795base value1.901581.90158fDum(inputs)2.123 Dumfries 1.402 and 1.344 Dumfries 1.124 affected by flooding in 1.101 is so much publicity for 0.742 uk or dumfries@bbc.co.uk. 0.479 Have you been 0.46 a flood alert remains in place across the Borders because of the constant rain. 0.45 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.398 in place for flood prevention plans. 0.296 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.272 to damage at the Lamington Viaduct. 0.269 Trains on the west coast mainline face disruption due 0.268 and Galloway 0.26 or 0.24 of damage in Newton Stewart, 0.24 First Minister Nicola Sturgeon visited the area 0.213 the impact on businesses." He said it was important that " 0.195 immediate steps" were taken to protect 0.191 He said it was important to get the flood protection plan right 0.185 who owns the Cinnamon Cafe which was badly affected, 0.179 the areas most vulnerable and a clear timetable put 0.137 Jeanette Tate, 0.129 agency response once the flood hit. 0.111 have been carried out to ensure the retaining 0.106 Many businesses and householders were affected by flooding in Newton 0.093 said she could not fault the multi- 0.075 ? 0.07 she said more preventative work could 0.065 "Obviously it is heart-breaking 0.061 "It is difficult but I do think there 0.06 However, 0.056 but backed calls to speed up the process. 0.056 the Borders 0.038 Stewart after the River Cree overflowed into the town. 0.029 to inspect the damage. 0.026 it is perhaps my perspective over the last few days. 0.026 for people who have been forced out of their homes and 0.021 and I totally appreciate that - 0.015 Peebles was badly hit by problems, 0.014 "That may not be true but 0.011 the Nith - -0.41 Repair work is ongoing in -0.339 to see the situation first hand. -0.316 Scottish Borders Council has put a list on its website of the roads worst affected and -0.282 drivers have been urged not to ignore closure signs. -0.257 Hawick and many roads in Peeblesshire -0.176 remain badly affected by -0.168 one of the areas worst affected, is still being assessed. -0.161 standing water. -0.123 Rowley was in Hawick on Monday -0.108 "I was quite taken aback by the amount of damage that has been done," he said. -0.09 sparking calls to introduce more defences in the area. -0.09 The Labour Party -0.075 The full cost -0.074 The waters breached a retaining wall, -0.073 's deputy Scottish leader Alex -0.048 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.03 but it is almost like we're neglected or forgotten," she said. -0.011 wall did not fail.
inputs
-0.075 / 4
The full cost
0.24 / 6
of damage in Newton Stewart,
-0.168 / 12
one of the areas worst affected, is still being assessed.
-0.41 / 7
Repair work is ongoing in
-0.257 / 11
Hawick and many roads in Peeblesshire
-0.176 / 4
remain badly affected by
-0.161 / 3
standing water.
0.269 / 11
Trains on the west coast mainline face disruption due
0.272 / 11
to damage at the Lamington Viaduct.
0.106 / 12
Many businesses and householders were affected by flooding in Newton
0.038 / 11
Stewart after the River Cree overflowed into the town.
0.24 / 8
First Minister Nicola Sturgeon visited the area
0.029 / 5
to inspect the damage.
-0.074 / 8
The waters breached a retaining wall,
-0.048 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.137 / 5
Jeanette Tate,
0.185 / 10
who owns the Cinnamon Cafe which was badly affected,
0.093 / 8
said she could not fault the multi-
0.129 / 7
agency response once the flood hit.
0.06 / 3
However,
0.07 / 7
she said more preventative work could
0.111 / 8
have been carried out to ensure the retaining
-0.011 / 5
wall did not fail.
0.061 / 10
"It is difficult but I do think there
1.101 / 5
is so much publicity for
2.123 / 3
Dumfries
1.402
and
0.011 / 4
the Nith -
0.021 / 6
and I totally appreciate that -
-0.03 / 14
but it is almost like we're neglected or forgotten," she said.
0.014 / 8
"That may not be true but
0.026 / 11
it is perhaps my perspective over the last few days.
0.296 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.46 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.015 / 10
Peebles was badly hit by problems,
-0.09 / 10
sparking calls to introduce more defences in the area.
-0.316 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.282 / 10
drivers have been urged not to ignore closure signs.
-0.09 / 4
The Labour Party
-0.073 / 5
's deputy Scottish leader Alex
-0.123 / 8
Rowley was in Hawick on Monday
-0.339 / 7
to see the situation first hand.
0.191 / 13
He said it was important to get the flood protection plan right
0.056 / 9
but backed calls to speed up the process.
-0.108 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.065 / 8
"Obviously it is heart-breaking
0.026 / 11
for people who have been forced out of their homes and
0.213 / 13
the impact on businesses." He said it was important that "
0.195 / 8
immediate steps" were taken to protect
0.179 / 9
the areas most vulnerable and a clear timetable put
0.398 / 7
in place for flood prevention plans.
0.479 / 4
Have you been
1.124 / 4
affected by flooding in
1.344 / 3
Dumfries
0.268 / 3
and Galloway
0.26
or
0.056 / 2
the Borders
0.075
?
0.45 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.742 / 15
uk or dumfries@bbc.co.uk.
-3-6-9033.679333.67933base value2.50422.5042ff(inputs)0.054 but it is almost like we're neglected or forgotten," she said. 0.023 sparking calls to introduce more defences in the area. 0.014 drivers have been urged not to ignore closure signs. 0.013 standing water. 0.01 one of the areas worst affected, is still being assessed. 0.01 The waters breached a retaining wall, 0.009 in place for flood prevention plans. 0.009 "I was quite taken aback by the amount of damage that has been done," he said. 0.005 but backed calls to speed up the process. 0.003 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.001 to inspect the damage. 0.0 the Nith - 0.0 to see the situation first hand. -0.135 affected by flooding in -0.131 Dumfries -0.087 Have you been -0.08 is so much publicity for -0.06 Dumfries -0.058 Hawick and many roads in Peeblesshire -0.049 and -0.047 a flood alert remains in place across the Borders because of the constant rain. -0.044 Many businesses and householders were affected by flooding in Newton -0.044 and Galloway -0.043 or -0.038 Stewart after the River Cree overflowed into the town. -0.035 to damage at the Lamington Viaduct. -0.032 of damage in Newton Stewart, -0.032 Rowley was in Hawick on Monday -0.031 Trains on the west coast mainline face disruption due -0.029 the areas most vulnerable and a clear timetable put -0.027 "It is difficult but I do think there -0.025 Peebles was badly hit by problems, -0.022 have been carried out to ensure the retaining -0.022 said she could not fault the multi- -0.017 Scottish Borders Council has put a list on its website of the roads worst affected and -0.017 for people who have been forced out of their homes and -0.015 the Borders -0.014 First Minister Nicola Sturgeon visited the area -0.014 ? -0.014 Jeanette Tate, -0.013 immediate steps" were taken to protect -0.013 However, -0.013 the impact on businesses." He said it was important that " -0.012 she said more preventative work could -0.011 it is perhaps my perspective over the last few days. -0.011 "That may not be true but -0.011 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.011 's deputy Scottish leader Alex -0.01 uk or dumfries@bbc.co.uk. -0.01 Repair work is ongoing in -0.01 He said it was important to get the flood protection plan right -0.009 agency response once the flood hit. -0.007 "Obviously it is heart-breaking -0.007 The full cost -0.007 remain badly affected by -0.003 who owns the Cinnamon Cafe which was badly affected, -0.002 and I totally appreciate that - -0.002 The Labour Party -0.001 wall did not fail. -0.0 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
-0.007 / 4
The full cost
-0.032 / 6
of damage in Newton Stewart,
0.01 / 12
one of the areas worst affected, is still being assessed.
-0.01 / 7
Repair work is ongoing in
-0.058 / 11
Hawick and many roads in Peeblesshire
-0.007 / 4
remain badly affected by
0.013 / 3
standing water.
-0.031 / 11
Trains on the west coast mainline face disruption due
-0.035 / 11
to damage at the Lamington Viaduct.
-0.044 / 12
Many businesses and householders were affected by flooding in Newton
-0.038 / 11
Stewart after the River Cree overflowed into the town.
-0.014 / 8
First Minister Nicola Sturgeon visited the area
0.001 / 5
to inspect the damage.
0.01 / 8
The waters breached a retaining wall,
0.003 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.014 / 5
Jeanette Tate,
-0.003 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.022 / 8
said she could not fault the multi-
-0.009 / 7
agency response once the flood hit.
-0.013 / 3
However,
-0.012 / 7
she said more preventative work could
-0.022 / 8
have been carried out to ensure the retaining
-0.001 / 5
wall did not fail.
-0.027 / 10
"It is difficult but I do think there
-0.08 / 5
is so much publicity for
-0.06 / 3
Dumfries
-0.049
and
0.0 / 4
the Nith -
-0.002 / 6
and I totally appreciate that -
0.054 / 14
but it is almost like we're neglected or forgotten," she said.
-0.011 / 8
"That may not be true but
-0.011 / 11
it is perhaps my perspective over the last few days.
-0.0 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.047 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.025 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.017 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.014 / 10
drivers have been urged not to ignore closure signs.
-0.002 / 4
The Labour Party
-0.011 / 5
's deputy Scottish leader Alex
-0.032 / 8
Rowley was in Hawick on Monday
0.0 / 7
to see the situation first hand.
-0.01 / 13
He said it was important to get the flood protection plan right
0.005 / 9
but backed calls to speed up the process.
0.009 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.007 / 8
"Obviously it is heart-breaking
-0.017 / 11
for people who have been forced out of their homes and
-0.013 / 13
the impact on businesses." He said it was important that "
-0.013 / 8
immediate steps" were taken to protect
-0.029 / 9
the areas most vulnerable and a clear timetable put
0.009 / 7
in place for flood prevention plans.
-0.087 / 4
Have you been
-0.135 / 4
affected by flooding in
-0.131 / 3
Dumfries
-0.044 / 3
and Galloway
-0.043
or
-0.015 / 2
the Borders
-0.014
?
-0.011 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.01 / 15
uk or dumfries@bbc.co.uk.
3.12.82.53.43.73.679333.67933base value2.50422.5042ff(inputs)0.054 but it is almost like we're neglected or forgotten," she said. 0.023 sparking calls to introduce more defences in the area. 0.014 drivers have been urged not to ignore closure signs. 0.013 standing water. 0.01 one of the areas worst affected, is still being assessed. 0.01 The waters breached a retaining wall, 0.009 in place for flood prevention plans. 0.009 "I was quite taken aback by the amount of damage that has been done," he said. 0.005 but backed calls to speed up the process. 0.003 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.001 to inspect the damage. 0.0 the Nith - 0.0 to see the situation first hand. -0.135 affected by flooding in -0.131 Dumfries -0.087 Have you been -0.08 is so much publicity for -0.06 Dumfries -0.058 Hawick and many roads in Peeblesshire -0.049 and -0.047 a flood alert remains in place across the Borders because of the constant rain. -0.044 Many businesses and householders were affected by flooding in Newton -0.044 and Galloway -0.043 or -0.038 Stewart after the River Cree overflowed into the town. -0.035 to damage at the Lamington Viaduct. -0.032 of damage in Newton Stewart, -0.032 Rowley was in Hawick on Monday -0.031 Trains on the west coast mainline face disruption due -0.029 the areas most vulnerable and a clear timetable put -0.027 "It is difficult but I do think there -0.025 Peebles was badly hit by problems, -0.022 have been carried out to ensure the retaining -0.022 said she could not fault the multi- -0.017 Scottish Borders Council has put a list on its website of the roads worst affected and -0.017 for people who have been forced out of their homes and -0.015 the Borders -0.014 First Minister Nicola Sturgeon visited the area -0.014 ? -0.014 Jeanette Tate, -0.013 immediate steps" were taken to protect -0.013 However, -0.013 the impact on businesses." He said it was important that " -0.012 she said more preventative work could -0.011 it is perhaps my perspective over the last few days. -0.011 "That may not be true but -0.011 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.011 's deputy Scottish leader Alex -0.01 uk or dumfries@bbc.co.uk. -0.01 Repair work is ongoing in -0.01 He said it was important to get the flood protection plan right -0.009 agency response once the flood hit. -0.007 "Obviously it is heart-breaking -0.007 The full cost -0.007 remain badly affected by -0.003 who owns the Cinnamon Cafe which was badly affected, -0.002 and I totally appreciate that - -0.002 The Labour Party -0.001 wall did not fail. -0.0 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
-0.007 / 4
The full cost
-0.032 / 6
of damage in Newton Stewart,
0.01 / 12
one of the areas worst affected, is still being assessed.
-0.01 / 7
Repair work is ongoing in
-0.058 / 11
Hawick and many roads in Peeblesshire
-0.007 / 4
remain badly affected by
0.013 / 3
standing water.
-0.031 / 11
Trains on the west coast mainline face disruption due
-0.035 / 11
to damage at the Lamington Viaduct.
-0.044 / 12
Many businesses and householders were affected by flooding in Newton
-0.038 / 11
Stewart after the River Cree overflowed into the town.
-0.014 / 8
First Minister Nicola Sturgeon visited the area
0.001 / 5
to inspect the damage.
0.01 / 8
The waters breached a retaining wall,
0.003 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.014 / 5
Jeanette Tate,
-0.003 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.022 / 8
said she could not fault the multi-
-0.009 / 7
agency response once the flood hit.
-0.013 / 3
However,
-0.012 / 7
she said more preventative work could
-0.022 / 8
have been carried out to ensure the retaining
-0.001 / 5
wall did not fail.
-0.027 / 10
"It is difficult but I do think there
-0.08 / 5
is so much publicity for
-0.06 / 3
Dumfries
-0.049
and
0.0 / 4
the Nith -
-0.002 / 6
and I totally appreciate that -
0.054 / 14
but it is almost like we're neglected or forgotten," she said.
-0.011 / 8
"That may not be true but
-0.011 / 11
it is perhaps my perspective over the last few days.
-0.0 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.047 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.025 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.017 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.014 / 10
drivers have been urged not to ignore closure signs.
-0.002 / 4
The Labour Party
-0.011 / 5
's deputy Scottish leader Alex
-0.032 / 8
Rowley was in Hawick on Monday
0.0 / 7
to see the situation first hand.
-0.01 / 13
He said it was important to get the flood protection plan right
0.005 / 9
but backed calls to speed up the process.
0.009 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.007 / 8
"Obviously it is heart-breaking
-0.017 / 11
for people who have been forced out of their homes and
-0.013 / 13
the impact on businesses." He said it was important that "
-0.013 / 8
immediate steps" were taken to protect
-0.029 / 9
the areas most vulnerable and a clear timetable put
0.009 / 7
in place for flood prevention plans.
-0.087 / 4
Have you been
-0.135 / 4
affected by flooding in
-0.131 / 3
Dumfries
-0.044 / 3
and Galloway
-0.043
or
-0.015 / 2
the Borders
-0.014
?
-0.011 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.01 / 15
uk or dumfries@bbc.co.uk.
-3-6-9033.334543.33454base value3.079363.07936fries(inputs)0.098 Dumfries 0.071 affected by flooding in 0.043 and 0.042 Dumfries 0.027 uk or dumfries@bbc.co.uk. 0.017 Stewart after the River Cree overflowed into the town. 0.014 drivers have been urged not to ignore closure signs. 0.012 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.011 sparking calls to introduce more defences in the area. 0.01 to inspect the damage. 0.01 ? 0.009 to see the situation first hand. 0.009 in place for flood prevention plans. 0.009 Scottish Borders Council has put a list on its website of the roads worst affected and 0.008 First Minister Nicola Sturgeon visited the area 0.006 the Borders 0.004 Rowley was in Hawick on Monday 0.004 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.003 Peebles was badly hit by problems, 0.0 it is perhaps my perspective over the last few days. -0.076 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.052 one of the areas worst affected, is still being assessed. -0.051 is so much publicity for -0.029 agency response once the flood hit. -0.028 have been carried out to ensure the retaining -0.028 However, -0.028 said she could not fault the multi- -0.027 she said more preventative work could -0.025 but it is almost like we're neglected or forgotten," she said. -0.024 The full cost -0.023 who owns the Cinnamon Cafe which was badly affected, -0.022 Jeanette Tate, -0.02 of damage in Newton Stewart, -0.02 to damage at the Lamington Viaduct. -0.018 remain badly affected by -0.015 "It is difficult but I do think there -0.015 wall did not fail. -0.011 Hawick and many roads in Peeblesshire -0.011 the impact on businesses." He said it was important that " -0.011 "I was quite taken aback by the amount of damage that has been done," he said. -0.011 immediate steps" were taken to protect -0.011 "Obviously it is heart-breaking -0.01 Many businesses and householders were affected by flooding in Newton -0.009 's deputy Scottish leader Alex -0.009 a flood alert remains in place across the Borders because of the constant rain. -0.009 The waters breached a retaining wall, -0.008 the areas most vulnerable and a clear timetable put -0.008 and I totally appreciate that - -0.008 He said it was important to get the flood protection plan right -0.007 Repair work is ongoing in -0.007 The Labour Party -0.007 the Nith - -0.005 or -0.004 for people who have been forced out of their homes and -0.004 but backed calls to speed up the process. -0.004 "That may not be true but -0.002 standing water. -0.002 Have you been -0.001 Trains on the west coast mainline face disruption due -0.0 and Galloway
inputs
-0.024 / 4
The full cost
-0.02 / 6
of damage in Newton Stewart,
-0.052 / 12
one of the areas worst affected, is still being assessed.
-0.007 / 7
Repair work is ongoing in
-0.011 / 11
Hawick and many roads in Peeblesshire
-0.018 / 4
remain badly affected by
-0.002 / 3
standing water.
-0.001 / 11
Trains on the west coast mainline face disruption due
-0.02 / 11
to damage at the Lamington Viaduct.
-0.01 / 12
Many businesses and householders were affected by flooding in Newton
0.017 / 11
Stewart after the River Cree overflowed into the town.
0.008 / 8
First Minister Nicola Sturgeon visited the area
0.01 / 5
to inspect the damage.
-0.009 / 8
The waters breached a retaining wall,
0.012 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.022 / 5
Jeanette Tate,
-0.023 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.028 / 8
said she could not fault the multi-
-0.029 / 7
agency response once the flood hit.
-0.028 / 3
However,
-0.027 / 7
she said more preventative work could
-0.028 / 8
have been carried out to ensure the retaining
-0.015 / 5
wall did not fail.
-0.015 / 10
"It is difficult but I do think there
-0.051 / 5
is so much publicity for
0.042 / 3
Dumfries
0.043
and
-0.007 / 4
the Nith -
-0.008 / 6
and I totally appreciate that -
-0.025 / 14
but it is almost like we're neglected or forgotten," she said.
-0.004 / 8
"That may not be true but
0.0 / 11
it is perhaps my perspective over the last few days.
0.004 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.009 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.003 / 10
Peebles was badly hit by problems,
0.011 / 10
sparking calls to introduce more defences in the area.
0.009 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.014 / 10
drivers have been urged not to ignore closure signs.
-0.007 / 4
The Labour Party
-0.009 / 5
's deputy Scottish leader Alex
0.004 / 8
Rowley was in Hawick on Monday
0.009 / 7
to see the situation first hand.
-0.008 / 13
He said it was important to get the flood protection plan right
-0.004 / 9
but backed calls to speed up the process.
-0.011 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.011 / 8
"Obviously it is heart-breaking
-0.004 / 11
for people who have been forced out of their homes and
-0.011 / 13
the impact on businesses." He said it was important that "
-0.011 / 8
immediate steps" were taken to protect
-0.008 / 9
the areas most vulnerable and a clear timetable put
0.009 / 7
in place for flood prevention plans.
-0.002 / 4
Have you been
0.071 / 4
affected by flooding in
0.098 / 3
Dumfries
-0.0 / 3
and Galloway
-0.005
or
0.006 / 2
the Borders
0.01
?
-0.076 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.027 / 15
uk or dumfries@bbc.co.uk.
3.232.83.43.63.334543.33454base value3.079363.07936fries(inputs)0.098 Dumfries 0.071 affected by flooding in 0.043 and 0.042 Dumfries 0.027 uk or dumfries@bbc.co.uk. 0.017 Stewart after the River Cree overflowed into the town. 0.014 drivers have been urged not to ignore closure signs. 0.012 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.011 sparking calls to introduce more defences in the area. 0.01 to inspect the damage. 0.01 ? 0.009 to see the situation first hand. 0.009 in place for flood prevention plans. 0.009 Scottish Borders Council has put a list on its website of the roads worst affected and 0.008 First Minister Nicola Sturgeon visited the area 0.006 the Borders 0.004 Rowley was in Hawick on Monday 0.004 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.003 Peebles was badly hit by problems, 0.0 it is perhaps my perspective over the last few days. -0.076 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.052 one of the areas worst affected, is still being assessed. -0.051 is so much publicity for -0.029 agency response once the flood hit. -0.028 have been carried out to ensure the retaining -0.028 However, -0.028 said she could not fault the multi- -0.027 she said more preventative work could -0.025 but it is almost like we're neglected or forgotten," she said. -0.024 The full cost -0.023 who owns the Cinnamon Cafe which was badly affected, -0.022 Jeanette Tate, -0.02 of damage in Newton Stewart, -0.02 to damage at the Lamington Viaduct. -0.018 remain badly affected by -0.015 "It is difficult but I do think there -0.015 wall did not fail. -0.011 Hawick and many roads in Peeblesshire -0.011 the impact on businesses." He said it was important that " -0.011 "I was quite taken aback by the amount of damage that has been done," he said. -0.011 immediate steps" were taken to protect -0.011 "Obviously it is heart-breaking -0.01 Many businesses and householders were affected by flooding in Newton -0.009 's deputy Scottish leader Alex -0.009 a flood alert remains in place across the Borders because of the constant rain. -0.009 The waters breached a retaining wall, -0.008 the areas most vulnerable and a clear timetable put -0.008 and I totally appreciate that - -0.008 He said it was important to get the flood protection plan right -0.007 Repair work is ongoing in -0.007 The Labour Party -0.007 the Nith - -0.005 or -0.004 for people who have been forced out of their homes and -0.004 but backed calls to speed up the process. -0.004 "That may not be true but -0.002 standing water. -0.002 Have you been -0.001 Trains on the west coast mainline face disruption due -0.0 and Galloway
inputs
-0.024 / 4
The full cost
-0.02 / 6
of damage in Newton Stewart,
-0.052 / 12
one of the areas worst affected, is still being assessed.
-0.007 / 7
Repair work is ongoing in
-0.011 / 11
Hawick and many roads in Peeblesshire
-0.018 / 4
remain badly affected by
-0.002 / 3
standing water.
-0.001 / 11
Trains on the west coast mainline face disruption due
-0.02 / 11
to damage at the Lamington Viaduct.
-0.01 / 12
Many businesses and householders were affected by flooding in Newton
0.017 / 11
Stewart after the River Cree overflowed into the town.
0.008 / 8
First Minister Nicola Sturgeon visited the area
0.01 / 5
to inspect the damage.
-0.009 / 8
The waters breached a retaining wall,
0.012 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.022 / 5
Jeanette Tate,
-0.023 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.028 / 8
said she could not fault the multi-
-0.029 / 7
agency response once the flood hit.
-0.028 / 3
However,
-0.027 / 7
she said more preventative work could
-0.028 / 8
have been carried out to ensure the retaining
-0.015 / 5
wall did not fail.
-0.015 / 10
"It is difficult but I do think there
-0.051 / 5
is so much publicity for
0.042 / 3
Dumfries
0.043
and
-0.007 / 4
the Nith -
-0.008 / 6
and I totally appreciate that -
-0.025 / 14
but it is almost like we're neglected or forgotten," she said.
-0.004 / 8
"That may not be true but
0.0 / 11
it is perhaps my perspective over the last few days.
0.004 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.009 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.003 / 10
Peebles was badly hit by problems,
0.011 / 10
sparking calls to introduce more defences in the area.
0.009 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.014 / 10
drivers have been urged not to ignore closure signs.
-0.007 / 4
The Labour Party
-0.009 / 5
's deputy Scottish leader Alex
0.004 / 8
Rowley was in Hawick on Monday
0.009 / 7
to see the situation first hand.
-0.008 / 13
He said it was important to get the flood protection plan right
-0.004 / 9
but backed calls to speed up the process.
-0.011 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.011 / 8
"Obviously it is heart-breaking
-0.004 / 11
for people who have been forced out of their homes and
-0.011 / 13
the impact on businesses." He said it was important that "
-0.011 / 8
immediate steps" were taken to protect
-0.008 / 9
the areas most vulnerable and a clear timetable put
0.009 / 7
in place for flood prevention plans.
-0.002 / 4
Have you been
0.071 / 4
affected by flooding in
0.098 / 3
Dumfries
-0.0 / 3
and Galloway
-0.005
or
0.006 / 2
the Borders
0.01
?
-0.076 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.027 / 15
uk or dumfries@bbc.co.uk.
-3-6-9030.612630.61263base value2.713862.71386fand(inputs)0.236 and Galloway 0.232 Many businesses and householders were affected by flooding in Newton 0.23 Stewart after the River Cree overflowed into the town. 0.229 or 0.163 the Borders 0.155 one of the areas worst affected, is still being assessed. 0.152 Hawick and many roads in Peeblesshire 0.13 ? 0.113 agency response once the flood hit. 0.113 of damage in Newton Stewart, 0.108 Rowley was in Hawick on Monday 0.1 Trains on the west coast mainline face disruption due 0.086 a flood alert remains in place across the Borders because of the constant rain. 0.086 The full cost 0.083 Repair work is ongoing in 0.075 the areas most vulnerable and a clear timetable put 0.074 Scottish Borders Council has put a list on its website of the roads worst affected and 0.07 to damage at the Lamington Viaduct. 0.064 said she could not fault the multi- 0.062 in place for flood prevention plans. 0.056 to see the situation first hand. 0.053 she said more preventative work could 0.053 Peebles was badly hit by problems, 0.052 First Minister Nicola Sturgeon visited the area 0.051 's deputy Scottish leader Alex 0.047 remain badly affected by 0.044 immediate steps" were taken to protect 0.043 He said it was important to get the flood protection plan right 0.042 the impact on businesses." He said it was important that " 0.039 but backed calls to speed up the process. 0.036 The Labour Party 0.034 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.032 sparking calls to introduce more defences in the area. 0.028 the Nith - 0.026 but it is almost like we're neglected or forgotten," she said. 0.022 for people who have been forced out of their homes and 0.021 to inspect the damage. 0.018 drivers have been urged not to ignore closure signs. 0.018 standing water. 0.011 However, 0.01 "Obviously it is heart-breaking 0.001 "I was quite taken aback by the amount of damage that has been done," he said. -0.169 is so much publicity for -0.136 Dumfries -0.118 Dumfries -0.117 The waters breached a retaining wall, -0.112 Have you been -0.108 affected by flooding in -0.107 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.103 uk or dumfries@bbc.co.uk. -0.058 wall did not fail. -0.054 and -0.037 have been carried out to ensure the retaining -0.024 and I totally appreciate that - -0.02 Jeanette Tate, -0.012 who owns the Cinnamon Cafe which was badly affected, -0.008 "That may not be true but -0.005 "It is difficult but I do think there -0.005 it is perhaps my perspective over the last few days. -0.004 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
0.086 / 4
The full cost
0.113 / 6
of damage in Newton Stewart,
0.155 / 12
one of the areas worst affected, is still being assessed.
0.083 / 7
Repair work is ongoing in
0.152 / 11
Hawick and many roads in Peeblesshire
0.047 / 4
remain badly affected by
0.018 / 3
standing water.
0.1 / 11
Trains on the west coast mainline face disruption due
0.07 / 11
to damage at the Lamington Viaduct.
0.232 / 12
Many businesses and householders were affected by flooding in Newton
0.23 / 11
Stewart after the River Cree overflowed into the town.
0.052 / 8
First Minister Nicola Sturgeon visited the area
0.021 / 5
to inspect the damage.
-0.117 / 8
The waters breached a retaining wall,
-0.107 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.02 / 5
Jeanette Tate,
-0.012 / 10
who owns the Cinnamon Cafe which was badly affected,
0.064 / 8
said she could not fault the multi-
0.113 / 7
agency response once the flood hit.
0.011 / 3
However,
0.053 / 7
she said more preventative work could
-0.037 / 8
have been carried out to ensure the retaining
-0.058 / 5
wall did not fail.
-0.005 / 10
"It is difficult but I do think there
-0.169 / 5
is so much publicity for
-0.118 / 3
Dumfries
-0.054
and
0.028 / 4
the Nith -
-0.024 / 6
and I totally appreciate that -
0.026 / 14
but it is almost like we're neglected or forgotten," she said.
-0.008 / 8
"That may not be true but
-0.005 / 11
it is perhaps my perspective over the last few days.
-0.004 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.086 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.053 / 10
Peebles was badly hit by problems,
0.032 / 10
sparking calls to introduce more defences in the area.
0.074 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.018 / 10
drivers have been urged not to ignore closure signs.
0.036 / 4
The Labour Party
0.051 / 5
's deputy Scottish leader Alex
0.108 / 8
Rowley was in Hawick on Monday
0.056 / 7
to see the situation first hand.
0.043 / 13
He said it was important to get the flood protection plan right
0.039 / 9
but backed calls to speed up the process.
0.001 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.01 / 8
"Obviously it is heart-breaking
0.022 / 11
for people who have been forced out of their homes and
0.042 / 13
the impact on businesses." He said it was important that "
0.044 / 8
immediate steps" were taken to protect
0.075 / 9
the areas most vulnerable and a clear timetable put
0.062 / 7
in place for flood prevention plans.
-0.112 / 4
Have you been
-0.108 / 4
affected by flooding in
-0.136 / 3
Dumfries
0.236 / 3
and Galloway
0.229
or
0.163 / 2
the Borders
0.13
?
0.034 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.103 / 15
uk or dumfries@bbc.co.uk.
21030.612630.61263base value2.713862.71386fand(inputs)0.236 and Galloway 0.232 Many businesses and householders were affected by flooding in Newton 0.23 Stewart after the River Cree overflowed into the town. 0.229 or 0.163 the Borders 0.155 one of the areas worst affected, is still being assessed. 0.152 Hawick and many roads in Peeblesshire 0.13 ? 0.113 agency response once the flood hit. 0.113 of damage in Newton Stewart, 0.108 Rowley was in Hawick on Monday 0.1 Trains on the west coast mainline face disruption due 0.086 a flood alert remains in place across the Borders because of the constant rain. 0.086 The full cost 0.083 Repair work is ongoing in 0.075 the areas most vulnerable and a clear timetable put 0.074 Scottish Borders Council has put a list on its website of the roads worst affected and 0.07 to damage at the Lamington Viaduct. 0.064 said she could not fault the multi- 0.062 in place for flood prevention plans. 0.056 to see the situation first hand. 0.053 she said more preventative work could 0.053 Peebles was badly hit by problems, 0.052 First Minister Nicola Sturgeon visited the area 0.051 's deputy Scottish leader Alex 0.047 remain badly affected by 0.044 immediate steps" were taken to protect 0.043 He said it was important to get the flood protection plan right 0.042 the impact on businesses." He said it was important that " 0.039 but backed calls to speed up the process. 0.036 The Labour Party 0.034 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.032 sparking calls to introduce more defences in the area. 0.028 the Nith - 0.026 but it is almost like we're neglected or forgotten," she said. 0.022 for people who have been forced out of their homes and 0.021 to inspect the damage. 0.018 drivers have been urged not to ignore closure signs. 0.018 standing water. 0.011 However, 0.01 "Obviously it is heart-breaking 0.001 "I was quite taken aback by the amount of damage that has been done," he said. -0.169 is so much publicity for -0.136 Dumfries -0.118 Dumfries -0.117 The waters breached a retaining wall, -0.112 Have you been -0.108 affected by flooding in -0.107 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.103 uk or dumfries@bbc.co.uk. -0.058 wall did not fail. -0.054 and -0.037 have been carried out to ensure the retaining -0.024 and I totally appreciate that - -0.02 Jeanette Tate, -0.012 who owns the Cinnamon Cafe which was badly affected, -0.008 "That may not be true but -0.005 "It is difficult but I do think there -0.005 it is perhaps my perspective over the last few days. -0.004 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
0.086 / 4
The full cost
0.113 / 6
of damage in Newton Stewart,
0.155 / 12
one of the areas worst affected, is still being assessed.
0.083 / 7
Repair work is ongoing in
0.152 / 11
Hawick and many roads in Peeblesshire
0.047 / 4
remain badly affected by
0.018 / 3
standing water.
0.1 / 11
Trains on the west coast mainline face disruption due
0.07 / 11
to damage at the Lamington Viaduct.
0.232 / 12
Many businesses and householders were affected by flooding in Newton
0.23 / 11
Stewart after the River Cree overflowed into the town.
0.052 / 8
First Minister Nicola Sturgeon visited the area
0.021 / 5
to inspect the damage.
-0.117 / 8
The waters breached a retaining wall,
-0.107 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.02 / 5
Jeanette Tate,
-0.012 / 10
who owns the Cinnamon Cafe which was badly affected,
0.064 / 8
said she could not fault the multi-
0.113 / 7
agency response once the flood hit.
0.011 / 3
However,
0.053 / 7
she said more preventative work could
-0.037 / 8
have been carried out to ensure the retaining
-0.058 / 5
wall did not fail.
-0.005 / 10
"It is difficult but I do think there
-0.169 / 5
is so much publicity for
-0.118 / 3
Dumfries
-0.054
and
0.028 / 4
the Nith -
-0.024 / 6
and I totally appreciate that -
0.026 / 14
but it is almost like we're neglected or forgotten," she said.
-0.008 / 8
"That may not be true but
-0.005 / 11
it is perhaps my perspective over the last few days.
-0.004 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.086 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.053 / 10
Peebles was badly hit by problems,
0.032 / 10
sparking calls to introduce more defences in the area.
0.074 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.018 / 10
drivers have been urged not to ignore closure signs.
0.036 / 4
The Labour Party
0.051 / 5
's deputy Scottish leader Alex
0.108 / 8
Rowley was in Hawick on Monday
0.056 / 7
to see the situation first hand.
0.043 / 13
He said it was important to get the flood protection plan right
0.039 / 9
but backed calls to speed up the process.
0.001 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.01 / 8
"Obviously it is heart-breaking
0.022 / 11
for people who have been forced out of their homes and
0.042 / 13
the impact on businesses." He said it was important that "
0.044 / 8
immediate steps" were taken to protect
0.075 / 9
the areas most vulnerable and a clear timetable put
0.062 / 7
in place for flood prevention plans.
-0.112 / 4
Have you been
-0.108 / 4
affected by flooding in
-0.136 / 3
Dumfries
0.236 / 3
and Galloway
0.229
or
0.163 / 2
the Borders
0.13
?
0.034 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.103 / 15
uk or dumfries@bbc.co.uk.
-3-6-9034.137854.13785base value4.060124.06012fGall(inputs)0.822 and Galloway 0.649 or 0.282 Have you been 0.089 uk or dumfries@bbc.co.uk. 0.074 a flood alert remains in place across the Borders because of the constant rain. 0.061 remain badly affected by 0.06 standing water. 0.054 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.049 "I was quite taken aback by the amount of damage that has been done," he said. 0.04 ? 0.037 "That may not be true but 0.036 First Minister Nicola Sturgeon visited the area 0.034 it is perhaps my perspective over the last few days. 0.032 in place for flood prevention plans. 0.031 drivers have been urged not to ignore closure signs. 0.031 Rowley was in Hawick on Monday 0.03 of damage in Newton Stewart, 0.03 to inspect the damage. 0.028 have been carried out to ensure the retaining 0.027 to see the situation first hand. 0.026 Stewart after the River Cree overflowed into the town. 0.021 one of the areas worst affected, is still being assessed. 0.02 but backed calls to speed up the process. 0.02 to damage at the Lamington Viaduct. 0.018 sparking calls to introduce more defences in the area. 0.017 He said it was important to get the flood protection plan right 0.017 wall did not fail. 0.015 but it is almost like we're neglected or forgotten," she said. 0.015 The full cost 0.012 Scottish Borders Council has put a list on its website of the roads worst affected and 0.012 Repair work is ongoing in 0.005 Many businesses and householders were affected by flooding in Newton 0.004 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.003 Trains on the west coast mainline face disruption due 0.002 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.589 the Nith - -0.545 Dumfries -0.545 and -0.296 and I totally appreciate that - -0.128 "It is difficult but I do think there -0.102 affected by flooding in -0.099 is so much publicity for -0.093 Dumfries -0.087 the Borders -0.053 said she could not fault the multi- -0.039 she said more preventative work could -0.034 Jeanette Tate, -0.026 The waters breached a retaining wall, -0.025 agency response once the flood hit. -0.02 who owns the Cinnamon Cafe which was badly affected, -0.015 "Obviously it is heart-breaking -0.015 for people who have been forced out of their homes and -0.015 the areas most vulnerable and a clear timetable put -0.014 However, -0.014 The Labour Party -0.013 Hawick and many roads in Peeblesshire -0.006 Peebles was badly hit by problems, -0.003 the impact on businesses." He said it was important that " -0.003 's deputy Scottish leader Alex -0.003 immediate steps" were taken to protect
inputs
0.015 / 4
The full cost
0.03 / 6
of damage in Newton Stewart,
0.021 / 12
one of the areas worst affected, is still being assessed.
0.012 / 7
Repair work is ongoing in
-0.013 / 11
Hawick and many roads in Peeblesshire
0.061 / 4
remain badly affected by
0.06 / 3
standing water.
0.003 / 11
Trains on the west coast mainline face disruption due
0.02 / 11
to damage at the Lamington Viaduct.
0.005 / 12
Many businesses and householders were affected by flooding in Newton
0.026 / 11
Stewart after the River Cree overflowed into the town.
0.036 / 8
First Minister Nicola Sturgeon visited the area
0.03 / 5
to inspect the damage.
-0.026 / 8
The waters breached a retaining wall,
0.002 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.034 / 5
Jeanette Tate,
-0.02 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.053 / 8
said she could not fault the multi-
-0.025 / 7
agency response once the flood hit.
-0.014 / 3
However,
-0.039 / 7
she said more preventative work could
0.028 / 8
have been carried out to ensure the retaining
0.017 / 5
wall did not fail.
-0.128 / 10
"It is difficult but I do think there
-0.099 / 5
is so much publicity for
-0.545 / 3
Dumfries
-0.545
and
-0.589 / 4
the Nith -
-0.296 / 6
and I totally appreciate that -
0.015 / 14
but it is almost like we're neglected or forgotten," she said.
0.037 / 8
"That may not be true but
0.034 / 11
it is perhaps my perspective over the last few days.
0.054 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.074 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.006 / 10
Peebles was badly hit by problems,
0.018 / 10
sparking calls to introduce more defences in the area.
0.012 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.031 / 10
drivers have been urged not to ignore closure signs.
-0.014 / 4
The Labour Party
-0.003 / 5
's deputy Scottish leader Alex
0.031 / 8
Rowley was in Hawick on Monday
0.027 / 7
to see the situation first hand.
0.017 / 13
He said it was important to get the flood protection plan right
0.02 / 9
but backed calls to speed up the process.
0.049 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.015 / 8
"Obviously it is heart-breaking
-0.015 / 11
for people who have been forced out of their homes and
-0.003 / 13
the impact on businesses." He said it was important that "
-0.003 / 8
immediate steps" were taken to protect
-0.015 / 9
the areas most vulnerable and a clear timetable put
0.032 / 7
in place for flood prevention plans.
0.282 / 4
Have you been
-0.102 / 4
affected by flooding in
-0.093 / 3
Dumfries
0.822 / 3
and Galloway
0.649
or
-0.087 / 2
the Borders
0.04
?
0.004 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.089 / 15
uk or dumfries@bbc.co.uk.
432564.137854.13785base value4.060124.06012fGall(inputs)0.822 and Galloway 0.649 or 0.282 Have you been 0.089 uk or dumfries@bbc.co.uk. 0.074 a flood alert remains in place across the Borders because of the constant rain. 0.061 remain badly affected by 0.06 standing water. 0.054 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.049 "I was quite taken aback by the amount of damage that has been done," he said. 0.04 ? 0.037 "That may not be true but 0.036 First Minister Nicola Sturgeon visited the area 0.034 it is perhaps my perspective over the last few days. 0.032 in place for flood prevention plans. 0.031 drivers have been urged not to ignore closure signs. 0.031 Rowley was in Hawick on Monday 0.03 of damage in Newton Stewart, 0.03 to inspect the damage. 0.028 have been carried out to ensure the retaining 0.027 to see the situation first hand. 0.026 Stewart after the River Cree overflowed into the town. 0.021 one of the areas worst affected, is still being assessed. 0.02 but backed calls to speed up the process. 0.02 to damage at the Lamington Viaduct. 0.018 sparking calls to introduce more defences in the area. 0.017 He said it was important to get the flood protection plan right 0.017 wall did not fail. 0.015 but it is almost like we're neglected or forgotten," she said. 0.015 The full cost 0.012 Scottish Borders Council has put a list on its website of the roads worst affected and 0.012 Repair work is ongoing in 0.005 Many businesses and householders were affected by flooding in Newton 0.004 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.003 Trains on the west coast mainline face disruption due 0.002 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.589 the Nith - -0.545 Dumfries -0.545 and -0.296 and I totally appreciate that - -0.128 "It is difficult but I do think there -0.102 affected by flooding in -0.099 is so much publicity for -0.093 Dumfries -0.087 the Borders -0.053 said she could not fault the multi- -0.039 she said more preventative work could -0.034 Jeanette Tate, -0.026 The waters breached a retaining wall, -0.025 agency response once the flood hit. -0.02 who owns the Cinnamon Cafe which was badly affected, -0.015 "Obviously it is heart-breaking -0.015 for people who have been forced out of their homes and -0.015 the areas most vulnerable and a clear timetable put -0.014 However, -0.014 The Labour Party -0.013 Hawick and many roads in Peeblesshire -0.006 Peebles was badly hit by problems, -0.003 the impact on businesses." He said it was important that " -0.003 's deputy Scottish leader Alex -0.003 immediate steps" were taken to protect
inputs
0.015 / 4
The full cost
0.03 / 6
of damage in Newton Stewart,
0.021 / 12
one of the areas worst affected, is still being assessed.
0.012 / 7
Repair work is ongoing in
-0.013 / 11
Hawick and many roads in Peeblesshire
0.061 / 4
remain badly affected by
0.06 / 3
standing water.
0.003 / 11
Trains on the west coast mainline face disruption due
0.02 / 11
to damage at the Lamington Viaduct.
0.005 / 12
Many businesses and householders were affected by flooding in Newton
0.026 / 11
Stewart after the River Cree overflowed into the town.
0.036 / 8
First Minister Nicola Sturgeon visited the area
0.03 / 5
to inspect the damage.
-0.026 / 8
The waters breached a retaining wall,
0.002 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.034 / 5
Jeanette Tate,
-0.02 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.053 / 8
said she could not fault the multi-
-0.025 / 7
agency response once the flood hit.
-0.014 / 3
However,
-0.039 / 7
she said more preventative work could
0.028 / 8
have been carried out to ensure the retaining
0.017 / 5
wall did not fail.
-0.128 / 10
"It is difficult but I do think there
-0.099 / 5
is so much publicity for
-0.545 / 3
Dumfries
-0.545
and
-0.589 / 4
the Nith -
-0.296 / 6
and I totally appreciate that -
0.015 / 14
but it is almost like we're neglected or forgotten," she said.
0.037 / 8
"That may not be true but
0.034 / 11
it is perhaps my perspective over the last few days.
0.054 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.074 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.006 / 10
Peebles was badly hit by problems,
0.018 / 10
sparking calls to introduce more defences in the area.
0.012 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.031 / 10
drivers have been urged not to ignore closure signs.
-0.014 / 4
The Labour Party
-0.003 / 5
's deputy Scottish leader Alex
0.031 / 8
Rowley was in Hawick on Monday
0.027 / 7
to see the situation first hand.
0.017 / 13
He said it was important to get the flood protection plan right
0.02 / 9
but backed calls to speed up the process.
0.049 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.015 / 8
"Obviously it is heart-breaking
-0.015 / 11
for people who have been forced out of their homes and
-0.003 / 13
the impact on businesses." He said it was important that "
-0.003 / 8
immediate steps" were taken to protect
-0.015 / 9
the areas most vulnerable and a clear timetable put
0.032 / 7
in place for flood prevention plans.
0.282 / 4
Have you been
-0.102 / 4
affected by flooding in
-0.093 / 3
Dumfries
0.822 / 3
and Galloway
0.649
or
-0.087 / 2
the Borders
0.04
?
0.004 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.089 / 15
uk or dumfries@bbc.co.uk.
-3-6-9032.694452.69445base value3.7493.749foway(inputs)0.101 uk or dumfries@bbc.co.uk. 0.099 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.097 of damage in Newton Stewart, 0.087 and Galloway 0.083 or 0.08 Hawick and many roads in Peeblesshire 0.079 a flood alert remains in place across the Borders because of the constant rain. 0.078 Dumfries 0.074 Rowley was in Hawick on Monday 0.061 Scottish Borders Council has put a list on its website of the roads worst affected and 0.06 First Minister Nicola Sturgeon visited the area 0.049 have been carried out to ensure the retaining 0.046 but it is almost like we're neglected or forgotten," she said. 0.042 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.038 in place for flood prevention plans. 0.036 ? 0.035 wall did not fail. 0.033 drivers have been urged not to ignore closure signs. 0.03 Peebles was badly hit by problems, 0.028 the Borders 0.026 sparking calls to introduce more defences in the area. 0.026 The Labour Party 0.024 's deputy Scottish leader Alex 0.023 who owns the Cinnamon Cafe which was badly affected, 0.022 Jeanette Tate, 0.017 standing water. 0.015 Stewart after the River Cree overflowed into the town. 0.015 to inspect the damage. 0.013 the impact on businesses." He said it was important that " 0.01 it is perhaps my perspective over the last few days. 0.01 to see the situation first hand. 0.009 immediate steps" were taken to protect 0.006 However, 0.006 "That may not be true but 0.005 The full cost 0.003 but backed calls to speed up the process. 0.002 "I was quite taken aback by the amount of damage that has been done," he said. 0.0 and I totally appreciate that - -0.072 affected by flooding in -0.068 is so much publicity for -0.034 Dumfries -0.033 Have you been -0.032 one of the areas worst affected, is still being assessed. -0.026 "It is difficult but I do think there -0.025 the areas most vulnerable and a clear timetable put -0.025 Trains on the west coast mainline face disruption due -0.021 remain badly affected by -0.017 said she could not fault the multi- -0.016 the Nith - -0.009 to damage at the Lamington Viaduct. -0.008 for people who have been forced out of their homes and -0.008 He said it was important to get the flood protection plan right -0.007 Repair work is ongoing in -0.005 and -0.003 agency response once the flood hit. -0.002 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.002 "Obviously it is heart-breaking -0.002 she said more preventative work could -0.001 Many businesses and householders were affected by flooding in Newton -0.0 The waters breached a retaining wall,
inputs
0.005 / 4
The full cost
0.097 / 6
of damage in Newton Stewart,
-0.032 / 12
one of the areas worst affected, is still being assessed.
-0.007 / 7
Repair work is ongoing in
0.08 / 11
Hawick and many roads in Peeblesshire
-0.021 / 4
remain badly affected by
0.017 / 3
standing water.
-0.025 / 11
Trains on the west coast mainline face disruption due
-0.009 / 11
to damage at the Lamington Viaduct.
-0.001 / 12
Many businesses and householders were affected by flooding in Newton
0.015 / 11
Stewart after the River Cree overflowed into the town.
0.06 / 8
First Minister Nicola Sturgeon visited the area
0.015 / 5
to inspect the damage.
-0.0 / 8
The waters breached a retaining wall,
-0.002 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.022 / 5
Jeanette Tate,
0.023 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.017 / 8
said she could not fault the multi-
-0.003 / 7
agency response once the flood hit.
0.006 / 3
However,
-0.002 / 7
she said more preventative work could
0.049 / 8
have been carried out to ensure the retaining
0.035 / 5
wall did not fail.
-0.026 / 10
"It is difficult but I do think there
-0.068 / 5
is so much publicity for
0.078 / 3
Dumfries
-0.005
and
-0.016 / 4
the Nith -
0.0 / 6
and I totally appreciate that -
0.046 / 14
but it is almost like we're neglected or forgotten," she said.
0.006 / 8
"That may not be true but
0.01 / 11
it is perhaps my perspective over the last few days.
0.042 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.079 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.03 / 10
Peebles was badly hit by problems,
0.026 / 10
sparking calls to introduce more defences in the area.
0.061 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.033 / 10
drivers have been urged not to ignore closure signs.
0.026 / 4
The Labour Party
0.024 / 5
's deputy Scottish leader Alex
0.074 / 8
Rowley was in Hawick on Monday
0.01 / 7
to see the situation first hand.
-0.008 / 13
He said it was important to get the flood protection plan right
0.003 / 9
but backed calls to speed up the process.
0.002 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.002 / 8
"Obviously it is heart-breaking
-0.008 / 11
for people who have been forced out of their homes and
0.013 / 13
the impact on businesses." He said it was important that "
0.009 / 8
immediate steps" were taken to protect
-0.025 / 9
the areas most vulnerable and a clear timetable put
0.038 / 7
in place for flood prevention plans.
-0.033 / 4
Have you been
-0.072 / 4
affected by flooding in
-0.034 / 3
Dumfries
0.087 / 3
and Galloway
0.083
or
0.028 / 2
the Borders
0.036
?
0.099 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.101 / 15
uk or dumfries@bbc.co.uk.
3.22.92.62.33.53.84.12.694452.69445base value3.7493.749foway(inputs)0.101 uk or dumfries@bbc.co.uk. 0.099 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.097 of damage in Newton Stewart, 0.087 and Galloway 0.083 or 0.08 Hawick and many roads in Peeblesshire 0.079 a flood alert remains in place across the Borders because of the constant rain. 0.078 Dumfries 0.074 Rowley was in Hawick on Monday 0.061 Scottish Borders Council has put a list on its website of the roads worst affected and 0.06 First Minister Nicola Sturgeon visited the area 0.049 have been carried out to ensure the retaining 0.046 but it is almost like we're neglected or forgotten," she said. 0.042 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.038 in place for flood prevention plans. 0.036 ? 0.035 wall did not fail. 0.033 drivers have been urged not to ignore closure signs. 0.03 Peebles was badly hit by problems, 0.028 the Borders 0.026 sparking calls to introduce more defences in the area. 0.026 The Labour Party 0.024 's deputy Scottish leader Alex 0.023 who owns the Cinnamon Cafe which was badly affected, 0.022 Jeanette Tate, 0.017 standing water. 0.015 Stewart after the River Cree overflowed into the town. 0.015 to inspect the damage. 0.013 the impact on businesses." He said it was important that " 0.01 it is perhaps my perspective over the last few days. 0.01 to see the situation first hand. 0.009 immediate steps" were taken to protect 0.006 However, 0.006 "That may not be true but 0.005 The full cost 0.003 but backed calls to speed up the process. 0.002 "I was quite taken aback by the amount of damage that has been done," he said. 0.0 and I totally appreciate that - -0.072 affected by flooding in -0.068 is so much publicity for -0.034 Dumfries -0.033 Have you been -0.032 one of the areas worst affected, is still being assessed. -0.026 "It is difficult but I do think there -0.025 the areas most vulnerable and a clear timetable put -0.025 Trains on the west coast mainline face disruption due -0.021 remain badly affected by -0.017 said she could not fault the multi- -0.016 the Nith - -0.009 to damage at the Lamington Viaduct. -0.008 for people who have been forced out of their homes and -0.008 He said it was important to get the flood protection plan right -0.007 Repair work is ongoing in -0.005 and -0.003 agency response once the flood hit. -0.002 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.002 "Obviously it is heart-breaking -0.002 she said more preventative work could -0.001 Many businesses and householders were affected by flooding in Newton -0.0 The waters breached a retaining wall,
inputs
0.005 / 4
The full cost
0.097 / 6
of damage in Newton Stewart,
-0.032 / 12
one of the areas worst affected, is still being assessed.
-0.007 / 7
Repair work is ongoing in
0.08 / 11
Hawick and many roads in Peeblesshire
-0.021 / 4
remain badly affected by
0.017 / 3
standing water.
-0.025 / 11
Trains on the west coast mainline face disruption due
-0.009 / 11
to damage at the Lamington Viaduct.
-0.001 / 12
Many businesses and householders were affected by flooding in Newton
0.015 / 11
Stewart after the River Cree overflowed into the town.
0.06 / 8
First Minister Nicola Sturgeon visited the area
0.015 / 5
to inspect the damage.
-0.0 / 8
The waters breached a retaining wall,
-0.002 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.022 / 5
Jeanette Tate,
0.023 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.017 / 8
said she could not fault the multi-
-0.003 / 7
agency response once the flood hit.
0.006 / 3
However,
-0.002 / 7
she said more preventative work could
0.049 / 8
have been carried out to ensure the retaining
0.035 / 5
wall did not fail.
-0.026 / 10
"It is difficult but I do think there
-0.068 / 5
is so much publicity for
0.078 / 3
Dumfries
-0.005
and
-0.016 / 4
the Nith -
0.0 / 6
and I totally appreciate that -
0.046 / 14
but it is almost like we're neglected or forgotten," she said.
0.006 / 8
"That may not be true but
0.01 / 11
it is perhaps my perspective over the last few days.
0.042 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.079 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.03 / 10
Peebles was badly hit by problems,
0.026 / 10
sparking calls to introduce more defences in the area.
0.061 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.033 / 10
drivers have been urged not to ignore closure signs.
0.026 / 4
The Labour Party
0.024 / 5
's deputy Scottish leader Alex
0.074 / 8
Rowley was in Hawick on Monday
0.01 / 7
to see the situation first hand.
-0.008 / 13
He said it was important to get the flood protection plan right
0.003 / 9
but backed calls to speed up the process.
0.002 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.002 / 8
"Obviously it is heart-breaking
-0.008 / 11
for people who have been forced out of their homes and
0.013 / 13
the impact on businesses." He said it was important that "
0.009 / 8
immediate steps" were taken to protect
-0.025 / 9
the areas most vulnerable and a clear timetable put
0.038 / 7
in place for flood prevention plans.
-0.033 / 4
Have you been
-0.072 / 4
affected by flooding in
-0.034 / 3
Dumfries
0.087 / 3
and Galloway
0.083
or
0.028 / 2
the Borders
0.036
?
0.099 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.101 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-4.40251-4.40251base value0.8177970.817797fand(inputs)0.721 and Galloway 0.676 or 0.561 the Borders 0.539 ? 0.322 Trains on the west coast mainline face disruption due 0.314 Hawick and many roads in Peeblesshire 0.286 Many businesses and householders were affected by flooding in Newton 0.264 Dumfries 0.262 affected by flooding in 0.26 Stewart after the River Cree overflowed into the town. 0.253 Repair work is ongoing in 0.248 to damage at the Lamington Viaduct. 0.243 Have you been 0.172 Scottish Borders Council has put a list on its website of the roads worst affected and 0.151 one of the areas worst affected, is still being assessed. 0.13 drivers have been urged not to ignore closure signs. 0.13 agency response once the flood hit. 0.126 Jeanette Tate, 0.117 said she could not fault the multi- 0.117 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.115 who owns the Cinnamon Cafe which was badly affected, 0.107 for people who have been forced out of their homes and 0.099 's deputy Scottish leader Alex 0.077 Rowley was in Hawick on Monday 0.077 remain badly affected by 0.074 the areas most vulnerable and a clear timetable put 0.073 "It is difficult but I do think there 0.061 Peebles was badly hit by problems, 0.06 "Obviously it is heart-breaking 0.049 The full cost 0.041 the impact on businesses." He said it was important that " 0.036 the Nith - 0.032 in place for flood prevention plans. 0.031 to inspect the damage. 0.028 The Labour Party 0.027 of damage in Newton Stewart, 0.025 He said it was important to get the flood protection plan right 0.024 sparking calls to introduce more defences in the area. 0.023 to see the situation first hand. 0.018 standing water. 0.018 immediate steps" were taken to protect 0.018 First Minister Nicola Sturgeon visited the area 0.015 but backed calls to speed up the process. 0.009 and I totally appreciate that - 0.006 it is perhaps my perspective over the last few days. -0.279 is so much publicity for -0.191 The waters breached a retaining wall, -0.189 Dumfries -0.178 and -0.172 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.161 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.146 a flood alert remains in place across the Borders because of the constant rain. -0.104 wall did not fail. -0.103 have been carried out to ensure the retaining -0.094 but it is almost like we're neglected or forgotten," she said. -0.058 she said more preventative work could -0.054 However, -0.034 uk or dumfries@bbc.co.uk. -0.029 "I was quite taken aback by the amount of damage that has been done," he said. -0.022 "That may not be true but
inputs
0.049 / 4
The full cost
0.027 / 6
of damage in Newton Stewart,
0.151 / 12
one of the areas worst affected, is still being assessed.
0.253 / 7
Repair work is ongoing in
0.314 / 11
Hawick and many roads in Peeblesshire
0.077 / 4
remain badly affected by
0.018 / 3
standing water.
0.322 / 11
Trains on the west coast mainline face disruption due
0.248 / 11
to damage at the Lamington Viaduct.
0.286 / 12
Many businesses and householders were affected by flooding in Newton
0.26 / 11
Stewart after the River Cree overflowed into the town.
0.018 / 8
First Minister Nicola Sturgeon visited the area
0.031 / 5
to inspect the damage.
-0.191 / 8
The waters breached a retaining wall,
-0.161 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.126 / 5
Jeanette Tate,
0.115 / 10
who owns the Cinnamon Cafe which was badly affected,
0.117 / 8
said she could not fault the multi-
0.13 / 7
agency response once the flood hit.
-0.054 / 3
However,
-0.058 / 7
she said more preventative work could
-0.103 / 8
have been carried out to ensure the retaining
-0.104 / 5
wall did not fail.
0.073 / 10
"It is difficult but I do think there
-0.279 / 5
is so much publicity for
-0.189 / 3
Dumfries
-0.178
and
0.036 / 4
the Nith -
0.009 / 6
and I totally appreciate that -
-0.094 / 14
but it is almost like we're neglected or forgotten," she said.
-0.022 / 8
"That may not be true but
0.006 / 11
it is perhaps my perspective over the last few days.
-0.172 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.146 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.061 / 10
Peebles was badly hit by problems,
0.024 / 10
sparking calls to introduce more defences in the area.
0.172 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.13 / 10
drivers have been urged not to ignore closure signs.
0.028 / 4
The Labour Party
0.099 / 5
's deputy Scottish leader Alex
0.077 / 8
Rowley was in Hawick on Monday
0.023 / 7
to see the situation first hand.
0.025 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
-0.029 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.06 / 8
"Obviously it is heart-breaking
0.107 / 11
for people who have been forced out of their homes and
0.041 / 13
the impact on businesses." He said it was important that "
0.018 / 8
immediate steps" were taken to protect
0.074 / 9
the areas most vulnerable and a clear timetable put
0.032 / 7
in place for flood prevention plans.
0.243 / 4
Have you been
0.262 / 4
affected by flooding in
0.264 / 3
Dumfries
0.721 / 3
and Galloway
0.676
or
0.561 / 2
the Borders
0.539
?
0.117 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.034 / 15
uk or dumfries@bbc.co.uk.
-2-4-602-4.40251-4.40251base value0.8177970.817797fand(inputs)0.721 and Galloway 0.676 or 0.561 the Borders 0.539 ? 0.322 Trains on the west coast mainline face disruption due 0.314 Hawick and many roads in Peeblesshire 0.286 Many businesses and householders were affected by flooding in Newton 0.264 Dumfries 0.262 affected by flooding in 0.26 Stewart after the River Cree overflowed into the town. 0.253 Repair work is ongoing in 0.248 to damage at the Lamington Viaduct. 0.243 Have you been 0.172 Scottish Borders Council has put a list on its website of the roads worst affected and 0.151 one of the areas worst affected, is still being assessed. 0.13 drivers have been urged not to ignore closure signs. 0.13 agency response once the flood hit. 0.126 Jeanette Tate, 0.117 said she could not fault the multi- 0.117 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.115 who owns the Cinnamon Cafe which was badly affected, 0.107 for people who have been forced out of their homes and 0.099 's deputy Scottish leader Alex 0.077 Rowley was in Hawick on Monday 0.077 remain badly affected by 0.074 the areas most vulnerable and a clear timetable put 0.073 "It is difficult but I do think there 0.061 Peebles was badly hit by problems, 0.06 "Obviously it is heart-breaking 0.049 The full cost 0.041 the impact on businesses." He said it was important that " 0.036 the Nith - 0.032 in place for flood prevention plans. 0.031 to inspect the damage. 0.028 The Labour Party 0.027 of damage in Newton Stewart, 0.025 He said it was important to get the flood protection plan right 0.024 sparking calls to introduce more defences in the area. 0.023 to see the situation first hand. 0.018 standing water. 0.018 immediate steps" were taken to protect 0.018 First Minister Nicola Sturgeon visited the area 0.015 but backed calls to speed up the process. 0.009 and I totally appreciate that - 0.006 it is perhaps my perspective over the last few days. -0.279 is so much publicity for -0.191 The waters breached a retaining wall, -0.189 Dumfries -0.178 and -0.172 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.161 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.146 a flood alert remains in place across the Borders because of the constant rain. -0.104 wall did not fail. -0.103 have been carried out to ensure the retaining -0.094 but it is almost like we're neglected or forgotten," she said. -0.058 she said more preventative work could -0.054 However, -0.034 uk or dumfries@bbc.co.uk. -0.029 "I was quite taken aback by the amount of damage that has been done," he said. -0.022 "That may not be true but
inputs
0.049 / 4
The full cost
0.027 / 6
of damage in Newton Stewart,
0.151 / 12
one of the areas worst affected, is still being assessed.
0.253 / 7
Repair work is ongoing in
0.314 / 11
Hawick and many roads in Peeblesshire
0.077 / 4
remain badly affected by
0.018 / 3
standing water.
0.322 / 11
Trains on the west coast mainline face disruption due
0.248 / 11
to damage at the Lamington Viaduct.
0.286 / 12
Many businesses and householders were affected by flooding in Newton
0.26 / 11
Stewart after the River Cree overflowed into the town.
0.018 / 8
First Minister Nicola Sturgeon visited the area
0.031 / 5
to inspect the damage.
-0.191 / 8
The waters breached a retaining wall,
-0.161 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.126 / 5
Jeanette Tate,
0.115 / 10
who owns the Cinnamon Cafe which was badly affected,
0.117 / 8
said she could not fault the multi-
0.13 / 7
agency response once the flood hit.
-0.054 / 3
However,
-0.058 / 7
she said more preventative work could
-0.103 / 8
have been carried out to ensure the retaining
-0.104 / 5
wall did not fail.
0.073 / 10
"It is difficult but I do think there
-0.279 / 5
is so much publicity for
-0.189 / 3
Dumfries
-0.178
and
0.036 / 4
the Nith -
0.009 / 6
and I totally appreciate that -
-0.094 / 14
but it is almost like we're neglected or forgotten," she said.
-0.022 / 8
"That may not be true but
0.006 / 11
it is perhaps my perspective over the last few days.
-0.172 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.146 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.061 / 10
Peebles was badly hit by problems,
0.024 / 10
sparking calls to introduce more defences in the area.
0.172 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.13 / 10
drivers have been urged not to ignore closure signs.
0.028 / 4
The Labour Party
0.099 / 5
's deputy Scottish leader Alex
0.077 / 8
Rowley was in Hawick on Monday
0.023 / 7
to see the situation first hand.
0.025 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
-0.029 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.06 / 8
"Obviously it is heart-breaking
0.107 / 11
for people who have been forced out of their homes and
0.041 / 13
the impact on businesses." He said it was important that "
0.018 / 8
immediate steps" were taken to protect
0.074 / 9
the areas most vulnerable and a clear timetable put
0.032 / 7
in place for flood prevention plans.
0.243 / 4
Have you been
0.262 / 4
affected by flooding in
0.264 / 3
Dumfries
0.721 / 3
and Galloway
0.676
or
0.561 / 2
the Borders
0.539
?
0.117 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.034 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-0.144031-0.144031base value2.171442.17144fthe(inputs)0.53 Dumfries 0.49 affected by flooding in 0.312 Have you been 0.226 the Borders 0.209 Dumfries 0.198 ? 0.176 and Galloway 0.172 uk or dumfries@bbc.co.uk. 0.164 or 0.142 and 0.121 Hawick and many roads in Peeblesshire 0.106 but it is almost like we're neglected or forgotten," she said. 0.097 Repair work is ongoing in 0.078 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.067 's deputy Scottish leader Alex 0.063 Rowley was in Hawick on Monday 0.052 it is perhaps my perspective over the last few days. 0.051 "That may not be true but 0.049 to damage at the Lamington Viaduct. 0.048 is so much publicity for 0.04 The Labour Party 0.038 the Nith - 0.036 Trains on the west coast mainline face disruption due 0.031 "It is difficult but I do think there 0.023 sparking calls to introduce more defences in the area. 0.018 to see the situation first hand. 0.015 and I totally appreciate that - 0.015 but backed calls to speed up the process. 0.009 Jeanette Tate, 0.007 "Obviously it is heart-breaking 0.006 for people who have been forced out of their homes and 0.004 who owns the Cinnamon Cafe which was badly affected, 0.004 He said it was important to get the flood protection plan right 0.003 the impact on businesses." He said it was important that " -0.191 a flood alert remains in place across the Borders because of the constant rain. -0.13 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.126 one of the areas worst affected, is still being assessed. -0.103 in place for flood prevention plans. -0.085 of damage in Newton Stewart, -0.065 remain badly affected by -0.054 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.054 she said more preventative work could -0.053 standing water. -0.04 Scottish Borders Council has put a list on its website of the roads worst affected and -0.037 "I was quite taken aback by the amount of damage that has been done," he said. -0.036 However, -0.032 said she could not fault the multi- -0.03 The waters breached a retaining wall, -0.029 have been carried out to ensure the retaining -0.029 Many businesses and householders were affected by flooding in Newton -0.027 agency response once the flood hit. -0.027 wall did not fail. -0.024 The full cost -0.024 First Minister Nicola Sturgeon visited the area -0.021 the areas most vulnerable and a clear timetable put -0.021 to inspect the damage. -0.02 drivers have been urged not to ignore closure signs. -0.02 Peebles was badly hit by problems, -0.004 Stewart after the River Cree overflowed into the town. -0.002 immediate steps" were taken to protect
inputs
-0.024 / 4
The full cost
-0.085 / 6
of damage in Newton Stewart,
-0.126 / 12
one of the areas worst affected, is still being assessed.
0.097 / 7
Repair work is ongoing in
0.121 / 11
Hawick and many roads in Peeblesshire
-0.065 / 4
remain badly affected by
-0.053 / 3
standing water.
0.036 / 11
Trains on the west coast mainline face disruption due
0.049 / 11
to damage at the Lamington Viaduct.
-0.029 / 12
Many businesses and householders were affected by flooding in Newton
-0.004 / 11
Stewart after the River Cree overflowed into the town.
-0.024 / 8
First Minister Nicola Sturgeon visited the area
-0.021 / 5
to inspect the damage.
-0.03 / 8
The waters breached a retaining wall,
-0.054 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.009 / 5
Jeanette Tate,
0.004 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.032 / 8
said she could not fault the multi-
-0.027 / 7
agency response once the flood hit.
-0.036 / 3
However,
-0.054 / 7
she said more preventative work could
-0.029 / 8
have been carried out to ensure the retaining
-0.027 / 5
wall did not fail.
0.031 / 10
"It is difficult but I do think there
0.048 / 5
is so much publicity for
0.209 / 3
Dumfries
0.142
and
0.038 / 4
the Nith -
0.015 / 6
and I totally appreciate that -
0.106 / 14
but it is almost like we're neglected or forgotten," she said.
0.051 / 8
"That may not be true but
0.052 / 11
it is perhaps my perspective over the last few days.
-0.13 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.191 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.02 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.04 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.02 / 10
drivers have been urged not to ignore closure signs.
0.04 / 4
The Labour Party
0.067 / 5
's deputy Scottish leader Alex
0.063 / 8
Rowley was in Hawick on Monday
0.018 / 7
to see the situation first hand.
0.004 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
-0.037 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.007 / 8
"Obviously it is heart-breaking
0.006 / 11
for people who have been forced out of their homes and
0.003 / 13
the impact on businesses." He said it was important that "
-0.002 / 8
immediate steps" were taken to protect
-0.021 / 9
the areas most vulnerable and a clear timetable put
-0.103 / 7
in place for flood prevention plans.
0.312 / 4
Have you been
0.49 / 4
affected by flooding in
0.53 / 3
Dumfries
0.176 / 3
and Galloway
0.164
or
0.226 / 2
the Borders
0.198
?
0.078 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.172 / 15
uk or dumfries@bbc.co.uk.
10-123-0.144031-0.144031base value2.171442.17144fthe(inputs)0.53 Dumfries 0.49 affected by flooding in 0.312 Have you been 0.226 the Borders 0.209 Dumfries 0.198 ? 0.176 and Galloway 0.172 uk or dumfries@bbc.co.uk. 0.164 or 0.142 and 0.121 Hawick and many roads in Peeblesshire 0.106 but it is almost like we're neglected or forgotten," she said. 0.097 Repair work is ongoing in 0.078 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.067 's deputy Scottish leader Alex 0.063 Rowley was in Hawick on Monday 0.052 it is perhaps my perspective over the last few days. 0.051 "That may not be true but 0.049 to damage at the Lamington Viaduct. 0.048 is so much publicity for 0.04 The Labour Party 0.038 the Nith - 0.036 Trains on the west coast mainline face disruption due 0.031 "It is difficult but I do think there 0.023 sparking calls to introduce more defences in the area. 0.018 to see the situation first hand. 0.015 and I totally appreciate that - 0.015 but backed calls to speed up the process. 0.009 Jeanette Tate, 0.007 "Obviously it is heart-breaking 0.006 for people who have been forced out of their homes and 0.004 who owns the Cinnamon Cafe which was badly affected, 0.004 He said it was important to get the flood protection plan right 0.003 the impact on businesses." He said it was important that " -0.191 a flood alert remains in place across the Borders because of the constant rain. -0.13 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.126 one of the areas worst affected, is still being assessed. -0.103 in place for flood prevention plans. -0.085 of damage in Newton Stewart, -0.065 remain badly affected by -0.054 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.054 she said more preventative work could -0.053 standing water. -0.04 Scottish Borders Council has put a list on its website of the roads worst affected and -0.037 "I was quite taken aback by the amount of damage that has been done," he said. -0.036 However, -0.032 said she could not fault the multi- -0.03 The waters breached a retaining wall, -0.029 have been carried out to ensure the retaining -0.029 Many businesses and householders were affected by flooding in Newton -0.027 agency response once the flood hit. -0.027 wall did not fail. -0.024 The full cost -0.024 First Minister Nicola Sturgeon visited the area -0.021 the areas most vulnerable and a clear timetable put -0.021 to inspect the damage. -0.02 drivers have been urged not to ignore closure signs. -0.02 Peebles was badly hit by problems, -0.004 Stewart after the River Cree overflowed into the town. -0.002 immediate steps" were taken to protect
inputs
-0.024 / 4
The full cost
-0.085 / 6
of damage in Newton Stewart,
-0.126 / 12
one of the areas worst affected, is still being assessed.
0.097 / 7
Repair work is ongoing in
0.121 / 11
Hawick and many roads in Peeblesshire
-0.065 / 4
remain badly affected by
-0.053 / 3
standing water.
0.036 / 11
Trains on the west coast mainline face disruption due
0.049 / 11
to damage at the Lamington Viaduct.
-0.029 / 12
Many businesses and householders were affected by flooding in Newton
-0.004 / 11
Stewart after the River Cree overflowed into the town.
-0.024 / 8
First Minister Nicola Sturgeon visited the area
-0.021 / 5
to inspect the damage.
-0.03 / 8
The waters breached a retaining wall,
-0.054 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.009 / 5
Jeanette Tate,
0.004 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.032 / 8
said she could not fault the multi-
-0.027 / 7
agency response once the flood hit.
-0.036 / 3
However,
-0.054 / 7
she said more preventative work could
-0.029 / 8
have been carried out to ensure the retaining
-0.027 / 5
wall did not fail.
0.031 / 10
"It is difficult but I do think there
0.048 / 5
is so much publicity for
0.209 / 3
Dumfries
0.142
and
0.038 / 4
the Nith -
0.015 / 6
and I totally appreciate that -
0.106 / 14
but it is almost like we're neglected or forgotten," she said.
0.051 / 8
"That may not be true but
0.052 / 11
it is perhaps my perspective over the last few days.
-0.13 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.191 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.02 / 10
Peebles was badly hit by problems,
0.023 / 10
sparking calls to introduce more defences in the area.
-0.04 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.02 / 10
drivers have been urged not to ignore closure signs.
0.04 / 4
The Labour Party
0.067 / 5
's deputy Scottish leader Alex
0.063 / 8
Rowley was in Hawick on Monday
0.018 / 7
to see the situation first hand.
0.004 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
-0.037 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.007 / 8
"Obviously it is heart-breaking
0.006 / 11
for people who have been forced out of their homes and
0.003 / 13
the impact on businesses." He said it was important that "
-0.002 / 8
immediate steps" were taken to protect
-0.021 / 9
the areas most vulnerable and a clear timetable put
-0.103 / 7
in place for flood prevention plans.
0.312 / 4
Have you been
0.49 / 4
affected by flooding in
0.53 / 3
Dumfries
0.176 / 3
and Galloway
0.164
or
0.226 / 2
the Borders
0.198
?
0.078 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.172 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-7.10642-7.10642base value2.592792.59279fBorders(inputs)0.712 the Borders 0.611 ? 0.544 Hawick and many roads in Peeblesshire 0.542 a flood alert remains in place across the Borders because of the constant rain. 0.519 and Galloway 0.513 or 0.356 Rowley was in Hawick on Monday 0.331 Scottish Borders Council has put a list on its website of the roads worst affected and 0.323 Dumfries 0.312 Trains on the west coast mainline face disruption due 0.304 Dumfries 0.297 Repair work is ongoing in 0.294 of damage in Newton Stewart, 0.292 Many businesses and householders were affected by flooding in Newton 0.288 in place for flood prevention plans. 0.285 affected by flooding in 0.262 Peebles was badly hit by problems, 0.212 one of the areas worst affected, is still being assessed. 0.206 to damage at the Lamington Viaduct. 0.178 First Minister Nicola Sturgeon visited the area 0.172 remain badly affected by 0.171 uk or dumfries@bbc.co.uk. 0.168 Stewart after the River Cree overflowed into the town. 0.155 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.154 standing water. 0.153 drivers have been urged not to ignore closure signs. 0.142 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.142 Have you been 0.127 who owns the Cinnamon Cafe which was badly affected, 0.118 The full cost 0.111 to see the situation first hand. 0.109 's deputy Scottish leader Alex 0.106 The Labour Party 0.102 He said it was important to get the flood protection plan right 0.098 the areas most vulnerable and a clear timetable put 0.088 and 0.084 sparking calls to introduce more defences in the area. 0.077 "I was quite taken aback by the amount of damage that has been done," he said. 0.073 have been carried out to ensure the retaining 0.067 but backed calls to speed up the process. 0.063 the Nith - 0.057 Jeanette Tate, 0.056 immediate steps" were taken to protect 0.039 said she could not fault the multi- 0.037 to inspect the damage. 0.036 However, 0.033 she said more preventative work could 0.03 the impact on businesses." He said it was important that " 0.023 agency response once the flood hit. 0.02 "Obviously it is heart-breaking 0.014 "That may not be true but 0.012 it is perhaps my perspective over the last few days. 0.009 and I totally appreciate that - 0.005 for people who have been forced out of their homes and -0.146 "It is difficult but I do think there -0.138 The waters breached a retaining wall, -0.127 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.06 is so much publicity for -0.053 but it is almost like we're neglected or forgotten," she said. -0.007 wall did not fail.
inputs
0.118 / 4
The full cost
0.294 / 6
of damage in Newton Stewart,
0.212 / 12
one of the areas worst affected, is still being assessed.
0.297 / 7
Repair work is ongoing in
0.544 / 11
Hawick and many roads in Peeblesshire
0.172 / 4
remain badly affected by
0.154 / 3
standing water.
0.312 / 11
Trains on the west coast mainline face disruption due
0.206 / 11
to damage at the Lamington Viaduct.
0.292 / 12
Many businesses and householders were affected by flooding in Newton
0.168 / 11
Stewart after the River Cree overflowed into the town.
0.178 / 8
First Minister Nicola Sturgeon visited the area
0.037 / 5
to inspect the damage.
-0.138 / 8
The waters breached a retaining wall,
-0.127 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.057 / 5
Jeanette Tate,
0.127 / 10
who owns the Cinnamon Cafe which was badly affected,
0.039 / 8
said she could not fault the multi-
0.023 / 7
agency response once the flood hit.
0.036 / 3
However,
0.033 / 7
she said more preventative work could
0.073 / 8
have been carried out to ensure the retaining
-0.007 / 5
wall did not fail.
-0.146 / 10
"It is difficult but I do think there
-0.06 / 5
is so much publicity for
0.304 / 3
Dumfries
0.088
and
0.063 / 4
the Nith -
0.009 / 6
and I totally appreciate that -
-0.053 / 14
but it is almost like we're neglected or forgotten," she said.
0.014 / 8
"That may not be true but
0.012 / 11
it is perhaps my perspective over the last few days.
0.142 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.542 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.262 / 10
Peebles was badly hit by problems,
0.084 / 10
sparking calls to introduce more defences in the area.
0.331 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.153 / 10
drivers have been urged not to ignore closure signs.
0.106 / 4
The Labour Party
0.109 / 5
's deputy Scottish leader Alex
0.356 / 8
Rowley was in Hawick on Monday
0.111 / 7
to see the situation first hand.
0.102 / 13
He said it was important to get the flood protection plan right
0.067 / 9
but backed calls to speed up the process.
0.077 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.02 / 8
"Obviously it is heart-breaking
0.005 / 11
for people who have been forced out of their homes and
0.03 / 13
the impact on businesses." He said it was important that "
0.056 / 8
immediate steps" were taken to protect
0.098 / 9
the areas most vulnerable and a clear timetable put
0.288 / 7
in place for flood prevention plans.
0.142 / 4
Have you been
0.285 / 4
affected by flooding in
0.323 / 3
Dumfries
0.519 / 3
and Galloway
0.513
or
0.712 / 2
the Borders
0.611
?
0.155 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.171 / 15
uk or dumfries@bbc.co.uk.
-2-4-602-7.10642-7.10642base value2.592792.59279fBorders(inputs)0.712 the Borders 0.611 ? 0.544 Hawick and many roads in Peeblesshire 0.542 a flood alert remains in place across the Borders because of the constant rain. 0.519 and Galloway 0.513 or 0.356 Rowley was in Hawick on Monday 0.331 Scottish Borders Council has put a list on its website of the roads worst affected and 0.323 Dumfries 0.312 Trains on the west coast mainline face disruption due 0.304 Dumfries 0.297 Repair work is ongoing in 0.294 of damage in Newton Stewart, 0.292 Many businesses and householders were affected by flooding in Newton 0.288 in place for flood prevention plans. 0.285 affected by flooding in 0.262 Peebles was badly hit by problems, 0.212 one of the areas worst affected, is still being assessed. 0.206 to damage at the Lamington Viaduct. 0.178 First Minister Nicola Sturgeon visited the area 0.172 remain badly affected by 0.171 uk or dumfries@bbc.co.uk. 0.168 Stewart after the River Cree overflowed into the town. 0.155 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.154 standing water. 0.153 drivers have been urged not to ignore closure signs. 0.142 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.142 Have you been 0.127 who owns the Cinnamon Cafe which was badly affected, 0.118 The full cost 0.111 to see the situation first hand. 0.109 's deputy Scottish leader Alex 0.106 The Labour Party 0.102 He said it was important to get the flood protection plan right 0.098 the areas most vulnerable and a clear timetable put 0.088 and 0.084 sparking calls to introduce more defences in the area. 0.077 "I was quite taken aback by the amount of damage that has been done," he said. 0.073 have been carried out to ensure the retaining 0.067 but backed calls to speed up the process. 0.063 the Nith - 0.057 Jeanette Tate, 0.056 immediate steps" were taken to protect 0.039 said she could not fault the multi- 0.037 to inspect the damage. 0.036 However, 0.033 she said more preventative work could 0.03 the impact on businesses." He said it was important that " 0.023 agency response once the flood hit. 0.02 "Obviously it is heart-breaking 0.014 "That may not be true but 0.012 it is perhaps my perspective over the last few days. 0.009 and I totally appreciate that - 0.005 for people who have been forced out of their homes and -0.146 "It is difficult but I do think there -0.138 The waters breached a retaining wall, -0.127 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.06 is so much publicity for -0.053 but it is almost like we're neglected or forgotten," she said. -0.007 wall did not fail.
inputs
0.118 / 4
The full cost
0.294 / 6
of damage in Newton Stewart,
0.212 / 12
one of the areas worst affected, is still being assessed.
0.297 / 7
Repair work is ongoing in
0.544 / 11
Hawick and many roads in Peeblesshire
0.172 / 4
remain badly affected by
0.154 / 3
standing water.
0.312 / 11
Trains on the west coast mainline face disruption due
0.206 / 11
to damage at the Lamington Viaduct.
0.292 / 12
Many businesses and householders were affected by flooding in Newton
0.168 / 11
Stewart after the River Cree overflowed into the town.
0.178 / 8
First Minister Nicola Sturgeon visited the area
0.037 / 5
to inspect the damage.
-0.138 / 8
The waters breached a retaining wall,
-0.127 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.057 / 5
Jeanette Tate,
0.127 / 10
who owns the Cinnamon Cafe which was badly affected,
0.039 / 8
said she could not fault the multi-
0.023 / 7
agency response once the flood hit.
0.036 / 3
However,
0.033 / 7
she said more preventative work could
0.073 / 8
have been carried out to ensure the retaining
-0.007 / 5
wall did not fail.
-0.146 / 10
"It is difficult but I do think there
-0.06 / 5
is so much publicity for
0.304 / 3
Dumfries
0.088
and
0.063 / 4
the Nith -
0.009 / 6
and I totally appreciate that -
-0.053 / 14
but it is almost like we're neglected or forgotten," she said.
0.014 / 8
"That may not be true but
0.012 / 11
it is perhaps my perspective over the last few days.
0.142 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.542 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.262 / 10
Peebles was badly hit by problems,
0.084 / 10
sparking calls to introduce more defences in the area.
0.331 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.153 / 10
drivers have been urged not to ignore closure signs.
0.106 / 4
The Labour Party
0.109 / 5
's deputy Scottish leader Alex
0.356 / 8
Rowley was in Hawick on Monday
0.111 / 7
to see the situation first hand.
0.102 / 13
He said it was important to get the flood protection plan right
0.067 / 9
but backed calls to speed up the process.
0.077 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.02 / 8
"Obviously it is heart-breaking
0.005 / 11
for people who have been forced out of their homes and
0.03 / 13
the impact on businesses." He said it was important that "
0.056 / 8
immediate steps" were taken to protect
0.098 / 9
the areas most vulnerable and a clear timetable put
0.288 / 7
in place for flood prevention plans.
0.142 / 4
Have you been
0.285 / 4
affected by flooding in
0.323 / 3
Dumfries
0.519 / 3
and Galloway
0.513
or
0.712 / 2
the Borders
0.611
?
0.155 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.171 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-1.45095-1.45095base value-0.717833-0.717833fis(inputs)0.283 Trains on the west coast mainline face disruption due 0.27 to damage at the Lamington Viaduct. 0.148 Repair work is ongoing in 0.146 Stewart after the River Cree overflowed into the town. 0.135 Many businesses and householders were affected by flooding in Newton 0.126 remain badly affected by 0.12 one of the areas worst affected, is still being assessed. 0.12 standing water. 0.11 Hawick and many roads in Peeblesshire 0.087 for people who have been forced out of their homes and 0.079 the impact on businesses." He said it was important that " 0.057 is so much publicity for 0.055 "Obviously it is heart-breaking 0.052 "It is difficult but I do think there 0.045 immediate steps" were taken to protect 0.036 who owns the Cinnamon Cafe which was badly affected, 0.036 affected by flooding in 0.034 Jeanette Tate, 0.027 to see the situation first hand. 0.024 Have you been 0.022 of damage in Newton Stewart, 0.019 The full cost 0.017 she said more preventative work could 0.015 Dumfries 0.005 to inspect the damage. 0.004 said she could not fault the multi- 0.003 or 0.003 and Galloway -0.142 but it is almost like we're neglected or forgotten," she said. -0.141 it is perhaps my perspective over the last few days. -0.131 "That may not be true but -0.085 the Nith - -0.083 sparking calls to introduce more defences in the area. -0.08 "I was quite taken aback by the amount of damage that has been done," he said. -0.073 and I totally appreciate that - -0.068 Peebles was badly hit by problems, -0.066 have been carried out to ensure the retaining -0.065 wall did not fail. -0.056 The waters breached a retaining wall, -0.038 The Labour Party -0.034 Dumfries -0.033 uk or dumfries@bbc.co.uk. -0.031 but backed calls to speed up the process. -0.027 agency response once the flood hit. -0.024 the areas most vulnerable and a clear timetable put -0.02 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.019 He said it was important to get the flood protection plan right -0.017 drivers have been urged not to ignore closure signs. -0.016 's deputy Scottish leader Alex -0.015 First Minister Nicola Sturgeon visited the area -0.014 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.013 However, -0.012 Rowley was in Hawick on Monday -0.012 a flood alert remains in place across the Borders because of the constant rain. -0.011 ? -0.007 in place for flood prevention plans. -0.007 the Borders -0.003 and -0.001 Scottish Borders Council has put a list on its website of the roads worst affected and -0.001 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
0.019 / 4
The full cost
0.022 / 6
of damage in Newton Stewart,
0.12 / 12
one of the areas worst affected, is still being assessed.
0.148 / 7
Repair work is ongoing in
0.11 / 11
Hawick and many roads in Peeblesshire
0.126 / 4
remain badly affected by
0.12 / 3
standing water.
0.283 / 11
Trains on the west coast mainline face disruption due
0.27 / 11
to damage at the Lamington Viaduct.
0.135 / 12
Many businesses and householders were affected by flooding in Newton
0.146 / 11
Stewart after the River Cree overflowed into the town.
-0.015 / 8
First Minister Nicola Sturgeon visited the area
0.005 / 5
to inspect the damage.
-0.056 / 8
The waters breached a retaining wall,
-0.02 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.034 / 5
Jeanette Tate,
0.036 / 10
who owns the Cinnamon Cafe which was badly affected,
0.004 / 8
said she could not fault the multi-
-0.027 / 7
agency response once the flood hit.
-0.013 / 3
However,
0.017 / 7
she said more preventative work could
-0.066 / 8
have been carried out to ensure the retaining
-0.065 / 5
wall did not fail.
0.052 / 10
"It is difficult but I do think there
0.057 / 5
is so much publicity for
-0.034 / 3
Dumfries
-0.003
and
-0.085 / 4
the Nith -
-0.073 / 6
and I totally appreciate that -
-0.142 / 14
but it is almost like we're neglected or forgotten," she said.
-0.131 / 8
"That may not be true but
-0.141 / 11
it is perhaps my perspective over the last few days.
-0.001 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.012 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.068 / 10
Peebles was badly hit by problems,
-0.083 / 10
sparking calls to introduce more defences in the area.
-0.001 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.017 / 10
drivers have been urged not to ignore closure signs.
-0.038 / 4
The Labour Party
-0.016 / 5
's deputy Scottish leader Alex
-0.012 / 8
Rowley was in Hawick on Monday
0.027 / 7
to see the situation first hand.
-0.019 / 13
He said it was important to get the flood protection plan right
-0.031 / 9
but backed calls to speed up the process.
-0.08 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.055 / 8
"Obviously it is heart-breaking
0.087 / 11
for people who have been forced out of their homes and
0.079 / 13
the impact on businesses." He said it was important that "
0.045 / 8
immediate steps" were taken to protect
-0.024 / 9
the areas most vulnerable and a clear timetable put
-0.007 / 7
in place for flood prevention plans.
0.024 / 4
Have you been
0.036 / 4
affected by flooding in
0.015 / 3
Dumfries
0.003 / 3
and Galloway
0.003
or
-0.007 / 2
the Borders
-0.011
?
-0.014 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.033 / 15
uk or dumfries@bbc.co.uk.
-1-20-1.45095-1.45095base value-0.717833-0.717833fis(inputs)0.283 Trains on the west coast mainline face disruption due 0.27 to damage at the Lamington Viaduct. 0.148 Repair work is ongoing in 0.146 Stewart after the River Cree overflowed into the town. 0.135 Many businesses and householders were affected by flooding in Newton 0.126 remain badly affected by 0.12 one of the areas worst affected, is still being assessed. 0.12 standing water. 0.11 Hawick and many roads in Peeblesshire 0.087 for people who have been forced out of their homes and 0.079 the impact on businesses." He said it was important that " 0.057 is so much publicity for 0.055 "Obviously it is heart-breaking 0.052 "It is difficult but I do think there 0.045 immediate steps" were taken to protect 0.036 who owns the Cinnamon Cafe which was badly affected, 0.036 affected by flooding in 0.034 Jeanette Tate, 0.027 to see the situation first hand. 0.024 Have you been 0.022 of damage in Newton Stewart, 0.019 The full cost 0.017 she said more preventative work could 0.015 Dumfries 0.005 to inspect the damage. 0.004 said she could not fault the multi- 0.003 or 0.003 and Galloway -0.142 but it is almost like we're neglected or forgotten," she said. -0.141 it is perhaps my perspective over the last few days. -0.131 "That may not be true but -0.085 the Nith - -0.083 sparking calls to introduce more defences in the area. -0.08 "I was quite taken aback by the amount of damage that has been done," he said. -0.073 and I totally appreciate that - -0.068 Peebles was badly hit by problems, -0.066 have been carried out to ensure the retaining -0.065 wall did not fail. -0.056 The waters breached a retaining wall, -0.038 The Labour Party -0.034 Dumfries -0.033 uk or dumfries@bbc.co.uk. -0.031 but backed calls to speed up the process. -0.027 agency response once the flood hit. -0.024 the areas most vulnerable and a clear timetable put -0.02 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.019 He said it was important to get the flood protection plan right -0.017 drivers have been urged not to ignore closure signs. -0.016 's deputy Scottish leader Alex -0.015 First Minister Nicola Sturgeon visited the area -0.014 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. -0.013 However, -0.012 Rowley was in Hawick on Monday -0.012 a flood alert remains in place across the Borders because of the constant rain. -0.011 ? -0.007 in place for flood prevention plans. -0.007 the Borders -0.003 and -0.001 Scottish Borders Council has put a list on its website of the roads worst affected and -0.001 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
inputs
0.019 / 4
The full cost
0.022 / 6
of damage in Newton Stewart,
0.12 / 12
one of the areas worst affected, is still being assessed.
0.148 / 7
Repair work is ongoing in
0.11 / 11
Hawick and many roads in Peeblesshire
0.126 / 4
remain badly affected by
0.12 / 3
standing water.
0.283 / 11
Trains on the west coast mainline face disruption due
0.27 / 11
to damage at the Lamington Viaduct.
0.135 / 12
Many businesses and householders were affected by flooding in Newton
0.146 / 11
Stewart after the River Cree overflowed into the town.
-0.015 / 8
First Minister Nicola Sturgeon visited the area
0.005 / 5
to inspect the damage.
-0.056 / 8
The waters breached a retaining wall,
-0.02 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.034 / 5
Jeanette Tate,
0.036 / 10
who owns the Cinnamon Cafe which was badly affected,
0.004 / 8
said she could not fault the multi-
-0.027 / 7
agency response once the flood hit.
-0.013 / 3
However,
0.017 / 7
she said more preventative work could
-0.066 / 8
have been carried out to ensure the retaining
-0.065 / 5
wall did not fail.
0.052 / 10
"It is difficult but I do think there
0.057 / 5
is so much publicity for
-0.034 / 3
Dumfries
-0.003
and
-0.085 / 4
the Nith -
-0.073 / 6
and I totally appreciate that -
-0.142 / 14
but it is almost like we're neglected or forgotten," she said.
-0.131 / 8
"That may not be true but
-0.141 / 11
it is perhaps my perspective over the last few days.
-0.001 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.012 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.068 / 10
Peebles was badly hit by problems,
-0.083 / 10
sparking calls to introduce more defences in the area.
-0.001 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.017 / 10
drivers have been urged not to ignore closure signs.
-0.038 / 4
The Labour Party
-0.016 / 5
's deputy Scottish leader Alex
-0.012 / 8
Rowley was in Hawick on Monday
0.027 / 7
to see the situation first hand.
-0.019 / 13
He said it was important to get the flood protection plan right
-0.031 / 9
but backed calls to speed up the process.
-0.08 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.055 / 8
"Obviously it is heart-breaking
0.087 / 11
for people who have been forced out of their homes and
0.079 / 13
the impact on businesses." He said it was important that "
0.045 / 8
immediate steps" were taken to protect
-0.024 / 9
the areas most vulnerable and a clear timetable put
-0.007 / 7
in place for flood prevention plans.
0.024 / 4
Have you been
0.036 / 4
affected by flooding in
0.015 / 3
Dumfries
0.003 / 3
and Galloway
0.003
or
-0.007 / 2
the Borders
-0.011
?
-0.014 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.033 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-4.08785-4.08785base value1.348161.34816fcontinuing(inputs)0.556 Trains on the west coast mainline face disruption due 0.539 who owns the Cinnamon Cafe which was badly affected, 0.538 's deputy Scottish leader Alex 0.529 to damage at the Lamington Viaduct. 0.527 remain badly affected by 0.509 Jeanette Tate, 0.457 Repair work is ongoing in 0.444 one of the areas worst affected, is still being assessed. 0.407 standing water. 0.361 Hawick and many roads in Peeblesshire 0.285 Many businesses and householders were affected by flooding in Newton 0.283 to inspect the damage. 0.251 First Minister Nicola Sturgeon visited the area 0.238 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.218 Scottish Borders Council has put a list on its website of the roads worst affected and 0.205 Stewart after the River Cree overflowed into the town. 0.193 The Labour Party 0.166 agency response once the flood hit. 0.164 drivers have been urged not to ignore closure signs. 0.157 "It is difficult but I do think there 0.152 Have you been 0.146 said she could not fault the multi- 0.142 affected by flooding in 0.117 of damage in Newton Stewart, 0.104 The waters breached a retaining wall, 0.101 Rowley was in Hawick on Monday 0.1 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.097 a flood alert remains in place across the Borders because of the constant rain. 0.096 The full cost 0.07 to see the situation first hand. 0.059 Dumfries 0.045 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.034 sparking calls to introduce more defences in the area. 0.031 Peebles was badly hit by problems, 0.015 or 0.013 and Galloway 0.009 the Borders 0.007 ? 0.001 uk or dumfries@bbc.co.uk. 0.0 but backed calls to speed up the process. -0.646 but it is almost like we're neglected or forgotten," she said. -0.297 the impact on businesses." He said it was important that " -0.291 is so much publicity for -0.239 immediate steps" were taken to protect -0.204 "Obviously it is heart-breaking -0.144 Dumfries -0.136 the areas most vulnerable and a clear timetable put -0.124 "That may not be true but -0.116 However, -0.11 have been carried out to ensure the retaining -0.1 in place for flood prevention plans. -0.098 wall did not fail. -0.093 for people who have been forced out of their homes and -0.084 she said more preventative work could -0.077 and -0.076 it is perhaps my perspective over the last few days. -0.038 He said it was important to get the flood protection plan right -0.03 "I was quite taken aback by the amount of damage that has been done," he said. -0.02 and I totally appreciate that - -0.009 the Nith -
inputs
0.096 / 4
The full cost
0.117 / 6
of damage in Newton Stewart,
0.444 / 12
one of the areas worst affected, is still being assessed.
0.457 / 7
Repair work is ongoing in
0.361 / 11
Hawick and many roads in Peeblesshire
0.527 / 4
remain badly affected by
0.407 / 3
standing water.
0.556 / 11
Trains on the west coast mainline face disruption due
0.529 / 11
to damage at the Lamington Viaduct.
0.285 / 12
Many businesses and householders were affected by flooding in Newton
0.205 / 11
Stewart after the River Cree overflowed into the town.
0.251 / 8
First Minister Nicola Sturgeon visited the area
0.283 / 5
to inspect the damage.
0.104 / 8
The waters breached a retaining wall,
0.1 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.509 / 5
Jeanette Tate,
0.539 / 10
who owns the Cinnamon Cafe which was badly affected,
0.146 / 8
said she could not fault the multi-
0.166 / 7
agency response once the flood hit.
-0.116 / 3
However,
-0.084 / 7
she said more preventative work could
-0.11 / 8
have been carried out to ensure the retaining
-0.098 / 5
wall did not fail.
0.157 / 10
"It is difficult but I do think there
-0.291 / 5
is so much publicity for
-0.144 / 3
Dumfries
-0.077
and
-0.009 / 4
the Nith -
-0.02 / 6
and I totally appreciate that -
-0.646 / 14
but it is almost like we're neglected or forgotten," she said.
-0.124 / 8
"That may not be true but
-0.076 / 11
it is perhaps my perspective over the last few days.
0.045 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.097 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.031 / 10
Peebles was badly hit by problems,
0.034 / 10
sparking calls to introduce more defences in the area.
0.218 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.164 / 10
drivers have been urged not to ignore closure signs.
0.193 / 4
The Labour Party
0.538 / 5
's deputy Scottish leader Alex
0.101 / 8
Rowley was in Hawick on Monday
0.07 / 7
to see the situation first hand.
-0.038 / 13
He said it was important to get the flood protection plan right
0.0 / 9
but backed calls to speed up the process.
-0.03 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.204 / 8
"Obviously it is heart-breaking
-0.093 / 11
for people who have been forced out of their homes and
-0.297 / 13
the impact on businesses." He said it was important that "
-0.239 / 8
immediate steps" were taken to protect
-0.136 / 9
the areas most vulnerable and a clear timetable put
-0.1 / 7
in place for flood prevention plans.
0.152 / 4
Have you been
0.142 / 4
affected by flooding in
0.059 / 3
Dumfries
0.013 / 3
and Galloway
0.015
or
0.009 / 2
the Borders
0.007
?
0.238 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.001 / 15
uk or dumfries@bbc.co.uk.
-1-3-5-713-4.08785-4.08785base value1.348161.34816fcontinuing(inputs)0.556 Trains on the west coast mainline face disruption due 0.539 who owns the Cinnamon Cafe which was badly affected, 0.538 's deputy Scottish leader Alex 0.529 to damage at the Lamington Viaduct. 0.527 remain badly affected by 0.509 Jeanette Tate, 0.457 Repair work is ongoing in 0.444 one of the areas worst affected, is still being assessed. 0.407 standing water. 0.361 Hawick and many roads in Peeblesshire 0.285 Many businesses and householders were affected by flooding in Newton 0.283 to inspect the damage. 0.251 First Minister Nicola Sturgeon visited the area 0.238 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.218 Scottish Borders Council has put a list on its website of the roads worst affected and 0.205 Stewart after the River Cree overflowed into the town. 0.193 The Labour Party 0.166 agency response once the flood hit. 0.164 drivers have been urged not to ignore closure signs. 0.157 "It is difficult but I do think there 0.152 Have you been 0.146 said she could not fault the multi- 0.142 affected by flooding in 0.117 of damage in Newton Stewart, 0.104 The waters breached a retaining wall, 0.101 Rowley was in Hawick on Monday 0.1 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.097 a flood alert remains in place across the Borders because of the constant rain. 0.096 The full cost 0.07 to see the situation first hand. 0.059 Dumfries 0.045 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.034 sparking calls to introduce more defences in the area. 0.031 Peebles was badly hit by problems, 0.015 or 0.013 and Galloway 0.009 the Borders 0.007 ? 0.001 uk or dumfries@bbc.co.uk. 0.0 but backed calls to speed up the process. -0.646 but it is almost like we're neglected or forgotten," she said. -0.297 the impact on businesses." He said it was important that " -0.291 is so much publicity for -0.239 immediate steps" were taken to protect -0.204 "Obviously it is heart-breaking -0.144 Dumfries -0.136 the areas most vulnerable and a clear timetable put -0.124 "That may not be true but -0.116 However, -0.11 have been carried out to ensure the retaining -0.1 in place for flood prevention plans. -0.098 wall did not fail. -0.093 for people who have been forced out of their homes and -0.084 she said more preventative work could -0.077 and -0.076 it is perhaps my perspective over the last few days. -0.038 He said it was important to get the flood protection plan right -0.03 "I was quite taken aback by the amount of damage that has been done," he said. -0.02 and I totally appreciate that - -0.009 the Nith -
inputs
0.096 / 4
The full cost
0.117 / 6
of damage in Newton Stewart,
0.444 / 12
one of the areas worst affected, is still being assessed.
0.457 / 7
Repair work is ongoing in
0.361 / 11
Hawick and many roads in Peeblesshire
0.527 / 4
remain badly affected by
0.407 / 3
standing water.
0.556 / 11
Trains on the west coast mainline face disruption due
0.529 / 11
to damage at the Lamington Viaduct.
0.285 / 12
Many businesses and householders were affected by flooding in Newton
0.205 / 11
Stewart after the River Cree overflowed into the town.
0.251 / 8
First Minister Nicola Sturgeon visited the area
0.283 / 5
to inspect the damage.
0.104 / 8
The waters breached a retaining wall,
0.1 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.509 / 5
Jeanette Tate,
0.539 / 10
who owns the Cinnamon Cafe which was badly affected,
0.146 / 8
said she could not fault the multi-
0.166 / 7
agency response once the flood hit.
-0.116 / 3
However,
-0.084 / 7
she said more preventative work could
-0.11 / 8
have been carried out to ensure the retaining
-0.098 / 5
wall did not fail.
0.157 / 10
"It is difficult but I do think there
-0.291 / 5
is so much publicity for
-0.144 / 3
Dumfries
-0.077
and
-0.009 / 4
the Nith -
-0.02 / 6
and I totally appreciate that -
-0.646 / 14
but it is almost like we're neglected or forgotten," she said.
-0.124 / 8
"That may not be true but
-0.076 / 11
it is perhaps my perspective over the last few days.
0.045 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.097 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.031 / 10
Peebles was badly hit by problems,
0.034 / 10
sparking calls to introduce more defences in the area.
0.218 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.164 / 10
drivers have been urged not to ignore closure signs.
0.193 / 4
The Labour Party
0.538 / 5
's deputy Scottish leader Alex
0.101 / 8
Rowley was in Hawick on Monday
0.07 / 7
to see the situation first hand.
-0.038 / 13
He said it was important to get the flood protection plan right
0.0 / 9
but backed calls to speed up the process.
-0.03 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.204 / 8
"Obviously it is heart-breaking
-0.093 / 11
for people who have been forced out of their homes and
-0.297 / 13
the impact on businesses." He said it was important that "
-0.239 / 8
immediate steps" were taken to protect
-0.136 / 9
the areas most vulnerable and a clear timetable put
-0.1 / 7
in place for flood prevention plans.
0.152 / 4
Have you been
0.142 / 4
affected by flooding in
0.059 / 3
Dumfries
0.013 / 3
and Galloway
0.015
or
0.009 / 2
the Borders
0.007
?
0.238 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.001 / 15
uk or dumfries@bbc.co.uk.
-3-6-9031.594491.59449base value0.5696770.569677fto(inputs)0.365 one of the areas worst affected, is still being assessed. 0.147 The full cost 0.129 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.127 agency response once the flood hit. 0.12 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.118 of damage in Newton Stewart, 0.096 said she could not fault the multi- 0.093 uk or dumfries@bbc.co.uk. 0.087 's deputy Scottish leader Alex 0.055 a flood alert remains in place across the Borders because of the constant rain. 0.05 to see the situation first hand. 0.047 Stewart after the River Cree overflowed into the town. 0.039 The Labour Party 0.029 "It is difficult but I do think there 0.029 who owns the Cinnamon Cafe which was badly affected, 0.024 Rowley was in Hawick on Monday 0.021 Jeanette Tate, 0.012 "I was quite taken aback by the amount of damage that has been done," he said. 0.005 "Obviously it is heart-breaking 0.003 Many businesses and householders were affected by flooding in Newton -0.216 Trains on the west coast mainline face disruption due -0.202 to damage at the Lamington Viaduct. -0.152 Hawick and many roads in Peeblesshire -0.133 "That may not be true but -0.126 Scottish Borders Council has put a list on its website of the roads worst affected and -0.118 it is perhaps my perspective over the last few days. -0.117 drivers have been urged not to ignore closure signs. -0.096 the impact on businesses." He said it was important that " -0.096 standing water. -0.086 immediate steps" were taken to protect -0.082 the Nith - -0.079 she said more preventative work could -0.078 Repair work is ongoing in -0.072 However, -0.07 remain badly affected by -0.065 Dumfries -0.06 and I totally appreciate that - -0.06 Have you been -0.059 but it is almost like we're neglected or forgotten," she said. -0.058 and Galloway -0.057 or -0.052 affected by flooding in -0.052 wall did not fail. -0.046 the Borders -0.045 Peebles was badly hit by problems, -0.043 have been carried out to ensure the retaining -0.041 ? -0.04 Dumfries -0.037 First Minister Nicola Sturgeon visited the area -0.031 The waters breached a retaining wall, -0.027 the areas most vulnerable and a clear timetable put -0.025 He said it was important to get the flood protection plan right -0.024 sparking calls to introduce more defences in the area. -0.024 to inspect the damage. -0.016 in place for flood prevention plans. -0.015 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.009 and -0.006 is so much publicity for -0.004 for people who have been forced out of their homes and -0.002 but backed calls to speed up the process.
inputs
0.147 / 4
The full cost
0.118 / 6
of damage in Newton Stewart,
0.365 / 12
one of the areas worst affected, is still being assessed.
-0.078 / 7
Repair work is ongoing in
-0.152 / 11
Hawick and many roads in Peeblesshire
-0.07 / 4
remain badly affected by
-0.096 / 3
standing water.
-0.216 / 11
Trains on the west coast mainline face disruption due
-0.202 / 11
to damage at the Lamington Viaduct.
0.003 / 12
Many businesses and householders were affected by flooding in Newton
0.047 / 11
Stewart after the River Cree overflowed into the town.
-0.037 / 8
First Minister Nicola Sturgeon visited the area
-0.024 / 5
to inspect the damage.
-0.031 / 8
The waters breached a retaining wall,
-0.015 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.021 / 5
Jeanette Tate,
0.029 / 10
who owns the Cinnamon Cafe which was badly affected,
0.096 / 8
said she could not fault the multi-
0.127 / 7
agency response once the flood hit.
-0.072 / 3
However,
-0.079 / 7
she said more preventative work could
-0.043 / 8
have been carried out to ensure the retaining
-0.052 / 5
wall did not fail.
0.029 / 10
"It is difficult but I do think there
-0.006 / 5
is so much publicity for
-0.04 / 3
Dumfries
-0.009
and
-0.082 / 4
the Nith -
-0.06 / 6
and I totally appreciate that -
-0.059 / 14
but it is almost like we're neglected or forgotten," she said.
-0.133 / 8
"That may not be true but
-0.118 / 11
it is perhaps my perspective over the last few days.
0.129 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.055 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.045 / 10
Peebles was badly hit by problems,
-0.024 / 10
sparking calls to introduce more defences in the area.
-0.126 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.117 / 10
drivers have been urged not to ignore closure signs.
0.039 / 4
The Labour Party
0.087 / 5
's deputy Scottish leader Alex
0.024 / 8
Rowley was in Hawick on Monday
0.05 / 7
to see the situation first hand.
-0.025 / 13
He said it was important to get the flood protection plan right
-0.002 / 9
but backed calls to speed up the process.
0.012 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.005 / 8
"Obviously it is heart-breaking
-0.004 / 11
for people who have been forced out of their homes and
-0.096 / 13
the impact on businesses." He said it was important that "
-0.086 / 8
immediate steps" were taken to protect
-0.027 / 9
the areas most vulnerable and a clear timetable put
-0.016 / 7
in place for flood prevention plans.
-0.06 / 4
Have you been
-0.052 / 4
affected by flooding in
-0.065 / 3
Dumfries
-0.058 / 3
and Galloway
-0.057
or
-0.046 / 2
the Borders
-0.041
?
0.12 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.093 / 15
uk or dumfries@bbc.co.uk.
10-1231.594491.59449base value0.5696770.569677fto(inputs)0.365 one of the areas worst affected, is still being assessed. 0.147 The full cost 0.129 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, 0.127 agency response once the flood hit. 0.12 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.118 of damage in Newton Stewart, 0.096 said she could not fault the multi- 0.093 uk or dumfries@bbc.co.uk. 0.087 's deputy Scottish leader Alex 0.055 a flood alert remains in place across the Borders because of the constant rain. 0.05 to see the situation first hand. 0.047 Stewart after the River Cree overflowed into the town. 0.039 The Labour Party 0.029 "It is difficult but I do think there 0.029 who owns the Cinnamon Cafe which was badly affected, 0.024 Rowley was in Hawick on Monday 0.021 Jeanette Tate, 0.012 "I was quite taken aback by the amount of damage that has been done," he said. 0.005 "Obviously it is heart-breaking 0.003 Many businesses and householders were affected by flooding in Newton -0.216 Trains on the west coast mainline face disruption due -0.202 to damage at the Lamington Viaduct. -0.152 Hawick and many roads in Peeblesshire -0.133 "That may not be true but -0.126 Scottish Borders Council has put a list on its website of the roads worst affected and -0.118 it is perhaps my perspective over the last few days. -0.117 drivers have been urged not to ignore closure signs. -0.096 the impact on businesses." He said it was important that " -0.096 standing water. -0.086 immediate steps" were taken to protect -0.082 the Nith - -0.079 she said more preventative work could -0.078 Repair work is ongoing in -0.072 However, -0.07 remain badly affected by -0.065 Dumfries -0.06 and I totally appreciate that - -0.06 Have you been -0.059 but it is almost like we're neglected or forgotten," she said. -0.058 and Galloway -0.057 or -0.052 affected by flooding in -0.052 wall did not fail. -0.046 the Borders -0.045 Peebles was badly hit by problems, -0.043 have been carried out to ensure the retaining -0.041 ? -0.04 Dumfries -0.037 First Minister Nicola Sturgeon visited the area -0.031 The waters breached a retaining wall, -0.027 the areas most vulnerable and a clear timetable put -0.025 He said it was important to get the flood protection plan right -0.024 sparking calls to introduce more defences in the area. -0.024 to inspect the damage. -0.016 in place for flood prevention plans. -0.015 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.009 and -0.006 is so much publicity for -0.004 for people who have been forced out of their homes and -0.002 but backed calls to speed up the process.
inputs
0.147 / 4
The full cost
0.118 / 6
of damage in Newton Stewart,
0.365 / 12
one of the areas worst affected, is still being assessed.
-0.078 / 7
Repair work is ongoing in
-0.152 / 11
Hawick and many roads in Peeblesshire
-0.07 / 4
remain badly affected by
-0.096 / 3
standing water.
-0.216 / 11
Trains on the west coast mainline face disruption due
-0.202 / 11
to damage at the Lamington Viaduct.
0.003 / 12
Many businesses and householders were affected by flooding in Newton
0.047 / 11
Stewart after the River Cree overflowed into the town.
-0.037 / 8
First Minister Nicola Sturgeon visited the area
-0.024 / 5
to inspect the damage.
-0.031 / 8
The waters breached a retaining wall,
-0.015 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.021 / 5
Jeanette Tate,
0.029 / 10
who owns the Cinnamon Cafe which was badly affected,
0.096 / 8
said she could not fault the multi-
0.127 / 7
agency response once the flood hit.
-0.072 / 3
However,
-0.079 / 7
she said more preventative work could
-0.043 / 8
have been carried out to ensure the retaining
-0.052 / 5
wall did not fail.
0.029 / 10
"It is difficult but I do think there
-0.006 / 5
is so much publicity for
-0.04 / 3
Dumfries
-0.009
and
-0.082 / 4
the Nith -
-0.06 / 6
and I totally appreciate that -
-0.059 / 14
but it is almost like we're neglected or forgotten," she said.
-0.133 / 8
"That may not be true but
-0.118 / 11
it is perhaps my perspective over the last few days.
0.129 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.055 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.045 / 10
Peebles was badly hit by problems,
-0.024 / 10
sparking calls to introduce more defences in the area.
-0.126 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
-0.117 / 10
drivers have been urged not to ignore closure signs.
0.039 / 4
The Labour Party
0.087 / 5
's deputy Scottish leader Alex
0.024 / 8
Rowley was in Hawick on Monday
0.05 / 7
to see the situation first hand.
-0.025 / 13
He said it was important to get the flood protection plan right
-0.002 / 9
but backed calls to speed up the process.
0.012 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.005 / 8
"Obviously it is heart-breaking
-0.004 / 11
for people who have been forced out of their homes and
-0.096 / 13
the impact on businesses." He said it was important that "
-0.086 / 8
immediate steps" were taken to protect
-0.027 / 9
the areas most vulnerable and a clear timetable put
-0.016 / 7
in place for flood prevention plans.
-0.06 / 4
Have you been
-0.052 / 4
affected by flooding in
-0.065 / 3
Dumfries
-0.058 / 3
and Galloway
-0.057
or
-0.046 / 2
the Borders
-0.041
?
0.12 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.093 / 15
uk or dumfries@bbc.co.uk.
-3-6-9030.5295590.529559base value0.1207220.120722fbe(inputs)0.104 have been carried out to ensure the retaining 0.1 in place for flood prevention plans. 0.088 she said more preventative work could 0.088 uk or dumfries@bbc.co.uk. 0.085 Dumfries 0.078 However, 0.077 one of the areas worst affected, is still being assessed. 0.074 Peebles was badly hit by problems, 0.07 wall did not fail. 0.067 and 0.06 the areas most vulnerable and a clear timetable put 0.047 sparking calls to introduce more defences in the area. 0.042 Rowley was in Hawick on Monday 0.04 of damage in Newton Stewart, 0.04 First Minister Nicola Sturgeon visited the area 0.035 "It is difficult but I do think there 0.033 "Obviously it is heart-breaking 0.027 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.027 to inspect the damage. 0.023 He said it was important to get the flood protection plan right 0.019 but backed calls to speed up the process. 0.018 immediate steps" were taken to protect 0.017 drivers have been urged not to ignore closure signs. 0.012 Dumfries 0.005 "I was quite taken aback by the amount of damage that has been done," he said. 0.004 Scottish Borders Council has put a list on its website of the roads worst affected and 0.003 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.003 and Galloway 0.002 or 0.001 is so much publicity for -0.177 Trains on the west coast mainline face disruption due -0.161 to damage at the Lamington Viaduct. -0.13 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.127 standing water. -0.122 remain badly affected by -0.102 's deputy Scottish leader Alex -0.097 Stewart after the River Cree overflowed into the town. -0.094 Many businesses and householders were affected by flooding in Newton -0.093 Repair work is ongoing in -0.088 but it is almost like we're neglected or forgotten," she said. -0.082 Jeanette Tate, -0.08 who owns the Cinnamon Cafe which was badly affected, -0.061 Hawick and many roads in Peeblesshire -0.059 a flood alert remains in place across the Borders because of the constant rain. -0.047 The Labour Party -0.032 Have you been -0.031 said she could not fault the multi- -0.022 agency response once the flood hit. -0.021 it is perhaps my perspective over the last few days. -0.019 affected by flooding in -0.01 "That may not be true but -0.01 for people who have been forced out of their homes and -0.008 and I totally appreciate that - -0.006 to see the situation first hand. -0.005 The full cost -0.005 The waters breached a retaining wall, -0.002 the impact on businesses." He said it was important that " -0.002 ? -0.002 the Borders -0.001 the Nith -
inputs
-0.005 / 4
The full cost
0.04 / 6
of damage in Newton Stewart,
0.077 / 12
one of the areas worst affected, is still being assessed.
-0.093 / 7
Repair work is ongoing in
-0.061 / 11
Hawick and many roads in Peeblesshire
-0.122 / 4
remain badly affected by
-0.127 / 3
standing water.
-0.177 / 11
Trains on the west coast mainline face disruption due
-0.161 / 11
to damage at the Lamington Viaduct.
-0.094 / 12
Many businesses and householders were affected by flooding in Newton
-0.097 / 11
Stewart after the River Cree overflowed into the town.
0.04 / 8
First Minister Nicola Sturgeon visited the area
0.027 / 5
to inspect the damage.
-0.005 / 8
The waters breached a retaining wall,
0.003 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.082 / 5
Jeanette Tate,
-0.08 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.031 / 8
said she could not fault the multi-
-0.022 / 7
agency response once the flood hit.
0.078 / 3
However,
0.088 / 7
she said more preventative work could
0.104 / 8
have been carried out to ensure the retaining
0.07 / 5
wall did not fail.
0.035 / 10
"It is difficult but I do think there
0.001 / 5
is so much publicity for
0.085 / 3
Dumfries
0.067
and
-0.001 / 4
the Nith -
-0.008 / 6
and I totally appreciate that -
-0.088 / 14
but it is almost like we're neglected or forgotten," she said.
-0.01 / 8
"That may not be true but
-0.021 / 11
it is perhaps my perspective over the last few days.
-0.13 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.059 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.074 / 10
Peebles was badly hit by problems,
0.047 / 10
sparking calls to introduce more defences in the area.
0.004 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.017 / 10
drivers have been urged not to ignore closure signs.
-0.047 / 4
The Labour Party
-0.102 / 5
's deputy Scottish leader Alex
0.042 / 8
Rowley was in Hawick on Monday
-0.006 / 7
to see the situation first hand.
0.023 / 13
He said it was important to get the flood protection plan right
0.019 / 9
but backed calls to speed up the process.
0.005 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.033 / 8
"Obviously it is heart-breaking
-0.01 / 11
for people who have been forced out of their homes and
-0.002 / 13
the impact on businesses." He said it was important that "
0.018 / 8
immediate steps" were taken to protect
0.06 / 9
the areas most vulnerable and a clear timetable put
0.1 / 7
in place for flood prevention plans.
-0.032 / 4
Have you been
-0.019 / 4
affected by flooding in
0.012 / 3
Dumfries
0.003 / 3
and Galloway
0.002
or
-0.002 / 2
the Borders
-0.002
?
0.027 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.088 / 15
uk or dumfries@bbc.co.uk.
0-110.5295590.529559base value0.1207220.120722fbe(inputs)0.104 have been carried out to ensure the retaining 0.1 in place for flood prevention plans. 0.088 she said more preventative work could 0.088 uk or dumfries@bbc.co.uk. 0.085 Dumfries 0.078 However, 0.077 one of the areas worst affected, is still being assessed. 0.074 Peebles was badly hit by problems, 0.07 wall did not fail. 0.067 and 0.06 the areas most vulnerable and a clear timetable put 0.047 sparking calls to introduce more defences in the area. 0.042 Rowley was in Hawick on Monday 0.04 of damage in Newton Stewart, 0.04 First Minister Nicola Sturgeon visited the area 0.035 "It is difficult but I do think there 0.033 "Obviously it is heart-breaking 0.027 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.027 to inspect the damage. 0.023 He said it was important to get the flood protection plan right 0.019 but backed calls to speed up the process. 0.018 immediate steps" were taken to protect 0.017 drivers have been urged not to ignore closure signs. 0.012 Dumfries 0.005 "I was quite taken aback by the amount of damage that has been done," he said. 0.004 Scottish Borders Council has put a list on its website of the roads worst affected and 0.003 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.003 and Galloway 0.002 or 0.001 is so much publicity for -0.177 Trains on the west coast mainline face disruption due -0.161 to damage at the Lamington Viaduct. -0.13 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.127 standing water. -0.122 remain badly affected by -0.102 's deputy Scottish leader Alex -0.097 Stewart after the River Cree overflowed into the town. -0.094 Many businesses and householders were affected by flooding in Newton -0.093 Repair work is ongoing in -0.088 but it is almost like we're neglected or forgotten," she said. -0.082 Jeanette Tate, -0.08 who owns the Cinnamon Cafe which was badly affected, -0.061 Hawick and many roads in Peeblesshire -0.059 a flood alert remains in place across the Borders because of the constant rain. -0.047 The Labour Party -0.032 Have you been -0.031 said she could not fault the multi- -0.022 agency response once the flood hit. -0.021 it is perhaps my perspective over the last few days. -0.019 affected by flooding in -0.01 "That may not be true but -0.01 for people who have been forced out of their homes and -0.008 and I totally appreciate that - -0.006 to see the situation first hand. -0.005 The full cost -0.005 The waters breached a retaining wall, -0.002 the impact on businesses." He said it was important that " -0.002 ? -0.002 the Borders -0.001 the Nith -
inputs
-0.005 / 4
The full cost
0.04 / 6
of damage in Newton Stewart,
0.077 / 12
one of the areas worst affected, is still being assessed.
-0.093 / 7
Repair work is ongoing in
-0.061 / 11
Hawick and many roads in Peeblesshire
-0.122 / 4
remain badly affected by
-0.127 / 3
standing water.
-0.177 / 11
Trains on the west coast mainline face disruption due
-0.161 / 11
to damage at the Lamington Viaduct.
-0.094 / 12
Many businesses and householders were affected by flooding in Newton
-0.097 / 11
Stewart after the River Cree overflowed into the town.
0.04 / 8
First Minister Nicola Sturgeon visited the area
0.027 / 5
to inspect the damage.
-0.005 / 8
The waters breached a retaining wall,
0.003 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
-0.082 / 5
Jeanette Tate,
-0.08 / 10
who owns the Cinnamon Cafe which was badly affected,
-0.031 / 8
said she could not fault the multi-
-0.022 / 7
agency response once the flood hit.
0.078 / 3
However,
0.088 / 7
she said more preventative work could
0.104 / 8
have been carried out to ensure the retaining
0.07 / 5
wall did not fail.
0.035 / 10
"It is difficult but I do think there
0.001 / 5
is so much publicity for
0.085 / 3
Dumfries
0.067
and
-0.001 / 4
the Nith -
-0.008 / 6
and I totally appreciate that -
-0.088 / 14
but it is almost like we're neglected or forgotten," she said.
-0.01 / 8
"That may not be true but
-0.021 / 11
it is perhaps my perspective over the last few days.
-0.13 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.059 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.074 / 10
Peebles was badly hit by problems,
0.047 / 10
sparking calls to introduce more defences in the area.
0.004 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.017 / 10
drivers have been urged not to ignore closure signs.
-0.047 / 4
The Labour Party
-0.102 / 5
's deputy Scottish leader Alex
0.042 / 8
Rowley was in Hawick on Monday
-0.006 / 7
to see the situation first hand.
0.023 / 13
He said it was important to get the flood protection plan right
0.019 / 9
but backed calls to speed up the process.
0.005 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.033 / 8
"Obviously it is heart-breaking
-0.01 / 11
for people who have been forced out of their homes and
-0.002 / 13
the impact on businesses." He said it was important that "
0.018 / 8
immediate steps" were taken to protect
0.06 / 9
the areas most vulnerable and a clear timetable put
0.1 / 7
in place for flood prevention plans.
-0.032 / 4
Have you been
-0.019 / 4
affected by flooding in
0.012 / 3
Dumfries
0.003 / 3
and Galloway
0.002
or
-0.002 / 2
the Borders
-0.002
?
0.027 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.088 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-1.42641-1.42641base value0.587370.58737ffelt(inputs)0.741 but it is almost like we're neglected or forgotten," she said. 0.295 it is perhaps my perspective over the last few days. 0.271 "That may not be true but 0.169 remain badly affected by 0.152 's deputy Scottish leader Alex 0.127 who owns the Cinnamon Cafe which was badly affected, 0.117 Jeanette Tate, 0.109 the Nith - 0.106 Have you been 0.106 "It is difficult but I do think there 0.105 affected by flooding in 0.104 said she could not fault the multi- 0.098 standing water. 0.098 and I totally appreciate that - 0.091 "I was quite taken aback by the amount of damage that has been done," he said. 0.088 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.084 to see the situation first hand. 0.083 a flood alert remains in place across the Borders because of the constant rain. 0.056 Dumfries 0.056 Many businesses and householders were affected by flooding in Newton 0.053 Repair work is ongoing in 0.052 Rowley was in Hawick on Monday 0.05 Hawick and many roads in Peeblesshire 0.035 Scottish Borders Council has put a list on its website of the roads worst affected and 0.032 He said it was important to get the flood protection plan right 0.03 for people who have been forced out of their homes and 0.029 in place for flood prevention plans. 0.029 The Labour Party 0.027 "Obviously it is heart-breaking 0.022 the areas most vulnerable and a clear timetable put 0.015 but backed calls to speed up the process. 0.007 drivers have been urged not to ignore closure signs. 0.006 and Galloway 0.005 or 0.001 is so much publicity for -0.15 she said more preventative work could -0.13 the impact on businesses." He said it was important that " -0.113 one of the areas worst affected, is still being assessed. -0.112 to damage at the Lamington Viaduct. -0.108 First Minister Nicola Sturgeon visited the area -0.098 However, -0.095 immediate steps" were taken to protect -0.083 The full cost -0.071 to inspect the damage. -0.071 sparking calls to introduce more defences in the area. -0.065 Trains on the west coast mainline face disruption due -0.058 of damage in Newton Stewart, -0.048 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.042 The waters breached a retaining wall, -0.038 Dumfries -0.028 and -0.027 have been carried out to ensure the retaining -0.021 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.02 agency response once the flood hit. -0.014 Peebles was badly hit by problems, -0.013 Stewart after the River Cree overflowed into the town. -0.013 wall did not fail. -0.011 the Borders -0.006 uk or dumfries@bbc.co.uk. -0.005 ?
inputs
-0.083 / 4
The full cost
-0.058 / 6
of damage in Newton Stewart,
-0.113 / 12
one of the areas worst affected, is still being assessed.
0.053 / 7
Repair work is ongoing in
0.05 / 11
Hawick and many roads in Peeblesshire
0.169 / 4
remain badly affected by
0.098 / 3
standing water.
-0.065 / 11
Trains on the west coast mainline face disruption due
-0.112 / 11
to damage at the Lamington Viaduct.
0.056 / 12
Many businesses and householders were affected by flooding in Newton
-0.013 / 11
Stewart after the River Cree overflowed into the town.
-0.108 / 8
First Minister Nicola Sturgeon visited the area
-0.071 / 5
to inspect the damage.
-0.042 / 8
The waters breached a retaining wall,
-0.048 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.117 / 5
Jeanette Tate,
0.127 / 10
who owns the Cinnamon Cafe which was badly affected,
0.104 / 8
said she could not fault the multi-
-0.02 / 7
agency response once the flood hit.
-0.098 / 3
However,
-0.15 / 7
she said more preventative work could
-0.027 / 8
have been carried out to ensure the retaining
-0.013 / 5
wall did not fail.
0.106 / 10
"It is difficult but I do think there
0.001 / 5
is so much publicity for
-0.038 / 3
Dumfries
-0.028
and
0.109 / 4
the Nith -
0.098 / 6
and I totally appreciate that -
0.741 / 14
but it is almost like we're neglected or forgotten," she said.
0.271 / 8
"That may not be true but
0.295 / 11
it is perhaps my perspective over the last few days.
-0.021 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.083 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.014 / 10
Peebles was badly hit by problems,
-0.071 / 10
sparking calls to introduce more defences in the area.
0.035 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.007 / 10
drivers have been urged not to ignore closure signs.
0.029 / 4
The Labour Party
0.152 / 5
's deputy Scottish leader Alex
0.052 / 8
Rowley was in Hawick on Monday
0.084 / 7
to see the situation first hand.
0.032 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
0.091 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.027 / 8
"Obviously it is heart-breaking
0.03 / 11
for people who have been forced out of their homes and
-0.13 / 13
the impact on businesses." He said it was important that "
-0.095 / 8
immediate steps" were taken to protect
0.022 / 9
the areas most vulnerable and a clear timetable put
0.029 / 7
in place for flood prevention plans.
0.106 / 4
Have you been
0.105 / 4
affected by flooding in
0.056 / 3
Dumfries
0.006 / 3
and Galloway
0.005
or
-0.011 / 2
the Borders
-0.005
?
0.088 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.006 / 15
uk or dumfries@bbc.co.uk.
-0-1-212-1.42641-1.42641base value0.587370.58737ffelt(inputs)0.741 but it is almost like we're neglected or forgotten," she said. 0.295 it is perhaps my perspective over the last few days. 0.271 "That may not be true but 0.169 remain badly affected by 0.152 's deputy Scottish leader Alex 0.127 who owns the Cinnamon Cafe which was badly affected, 0.117 Jeanette Tate, 0.109 the Nith - 0.106 Have you been 0.106 "It is difficult but I do think there 0.105 affected by flooding in 0.104 said she could not fault the multi- 0.098 standing water. 0.098 and I totally appreciate that - 0.091 "I was quite taken aback by the amount of damage that has been done," he said. 0.088 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.084 to see the situation first hand. 0.083 a flood alert remains in place across the Borders because of the constant rain. 0.056 Dumfries 0.056 Many businesses and householders were affected by flooding in Newton 0.053 Repair work is ongoing in 0.052 Rowley was in Hawick on Monday 0.05 Hawick and many roads in Peeblesshire 0.035 Scottish Borders Council has put a list on its website of the roads worst affected and 0.032 He said it was important to get the flood protection plan right 0.03 for people who have been forced out of their homes and 0.029 in place for flood prevention plans. 0.029 The Labour Party 0.027 "Obviously it is heart-breaking 0.022 the areas most vulnerable and a clear timetable put 0.015 but backed calls to speed up the process. 0.007 drivers have been urged not to ignore closure signs. 0.006 and Galloway 0.005 or 0.001 is so much publicity for -0.15 she said more preventative work could -0.13 the impact on businesses." He said it was important that " -0.113 one of the areas worst affected, is still being assessed. -0.112 to damage at the Lamington Viaduct. -0.108 First Minister Nicola Sturgeon visited the area -0.098 However, -0.095 immediate steps" were taken to protect -0.083 The full cost -0.071 to inspect the damage. -0.071 sparking calls to introduce more defences in the area. -0.065 Trains on the west coast mainline face disruption due -0.058 of damage in Newton Stewart, -0.048 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. -0.042 The waters breached a retaining wall, -0.038 Dumfries -0.028 and -0.027 have been carried out to ensure the retaining -0.021 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.02 agency response once the flood hit. -0.014 Peebles was badly hit by problems, -0.013 Stewart after the River Cree overflowed into the town. -0.013 wall did not fail. -0.011 the Borders -0.006 uk or dumfries@bbc.co.uk. -0.005 ?
inputs
-0.083 / 4
The full cost
-0.058 / 6
of damage in Newton Stewart,
-0.113 / 12
one of the areas worst affected, is still being assessed.
0.053 / 7
Repair work is ongoing in
0.05 / 11
Hawick and many roads in Peeblesshire
0.169 / 4
remain badly affected by
0.098 / 3
standing water.
-0.065 / 11
Trains on the west coast mainline face disruption due
-0.112 / 11
to damage at the Lamington Viaduct.
0.056 / 12
Many businesses and householders were affected by flooding in Newton
-0.013 / 11
Stewart after the River Cree overflowed into the town.
-0.108 / 8
First Minister Nicola Sturgeon visited the area
-0.071 / 5
to inspect the damage.
-0.042 / 8
The waters breached a retaining wall,
-0.048 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
0.117 / 5
Jeanette Tate,
0.127 / 10
who owns the Cinnamon Cafe which was badly affected,
0.104 / 8
said she could not fault the multi-
-0.02 / 7
agency response once the flood hit.
-0.098 / 3
However,
-0.15 / 7
she said more preventative work could
-0.027 / 8
have been carried out to ensure the retaining
-0.013 / 5
wall did not fail.
0.106 / 10
"It is difficult but I do think there
0.001 / 5
is so much publicity for
-0.038 / 3
Dumfries
-0.028
and
0.109 / 4
the Nith -
0.098 / 6
and I totally appreciate that -
0.741 / 14
but it is almost like we're neglected or forgotten," she said.
0.271 / 8
"That may not be true but
0.295 / 11
it is perhaps my perspective over the last few days.
-0.021 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
0.083 / 15
a flood alert remains in place across the Borders because of the constant rain.
-0.014 / 10
Peebles was badly hit by problems,
-0.071 / 10
sparking calls to introduce more defences in the area.
0.035 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.007 / 10
drivers have been urged not to ignore closure signs.
0.029 / 4
The Labour Party
0.152 / 5
's deputy Scottish leader Alex
0.052 / 8
Rowley was in Hawick on Monday
0.084 / 7
to see the situation first hand.
0.032 / 13
He said it was important to get the flood protection plan right
0.015 / 9
but backed calls to speed up the process.
0.091 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
0.027 / 8
"Obviously it is heart-breaking
0.03 / 11
for people who have been forced out of their homes and
-0.13 / 13
the impact on businesses." He said it was important that "
-0.095 / 8
immediate steps" were taken to protect
0.022 / 9
the areas most vulnerable and a clear timetable put
0.029 / 7
in place for flood prevention plans.
0.106 / 4
Have you been
0.105 / 4
affected by flooding in
0.056 / 3
Dumfries
0.006 / 3
and Galloway
0.005
or
-0.011 / 2
the Borders
-0.005
?
0.088 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
-0.006 / 15
uk or dumfries@bbc.co.uk.
-3-6-903-2.10605-2.10605base value-1.04136-1.04136f.(inputs)1.295 Jeanette Tate, who owns the Cinnamon Cafe which was badly affected, 0.96 's deputy Scottish leader Alex 0.216 Scottish Borders Council has put a list on its website of the roads worst affected and 0.213 The Labour Party 0.2 First Minister Nicola Sturgeon visited the area 0.191 drivers have been urged not to ignore closure signs. 0.169 to inspect the damage. 0.151 one of the areas worst affected, is still being assessed. 0.143 Peebles was badly hit by problems, 0.122 "It is difficult but I do think there 0.122 Hawick and many roads in Peeblesshire 0.121 sparking calls to introduce more defences in the area. 0.118 agency response once the flood hit. 0.111 Repair work is ongoing in 0.108 The full cost 0.092 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.091 remain badly affected by 0.081 of damage in Newton Stewart, 0.078 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.072 standing water. 0.05 The waters breached a retaining wall, 0.045 Stewart after the River Cree overflowed into the town. 0.044 Many businesses and householders were affected by flooding in Newton 0.034 uk or dumfries@bbc.co.uk. 0.026 said she could not fault the multi- 0.018 to damage at the Lamington Viaduct. 0.017 the areas most vulnerable and a clear timetable put 0.013 is so much publicity for 0.011 Rowley was in Hawick on Monday -0.545 but it is almost like we're neglected or forgotten," she said. -0.533 the impact on businesses." He said it was important that " -0.34 "That may not be true but -0.329 it is perhaps my perspective over the last few days. -0.264 immediate steps" were taken to protect -0.254 a flood alert remains in place across the Borders because of the constant rain. -0.182 "Obviously it is heart-breaking -0.173 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.147 she said more preventative work could -0.124 the Nith - -0.123 However, -0.12 for people who have been forced out of their homes and -0.116 and I totally appreciate that - -0.073 Have you been -0.069 wall did not fail. -0.068 have been carried out to ensure the retaining -0.06 Dumfries -0.048 and Galloway -0.048 the Borders -0.047 or -0.046 ? -0.031 He said it was important to get the flood protection plan right -0.03 affected by flooding in -0.024 Trains on the west coast mainline face disruption due -0.02 Dumfries -0.015 to see the situation first hand. -0.012 "I was quite taken aback by the amount of damage that has been done," he said. -0.003 but backed calls to speed up the process. -0.002 and -0.002 in place for flood prevention plans.
inputs
0.108 / 4
The full cost
0.081 / 6
of damage in Newton Stewart,
0.151 / 12
one of the areas worst affected, is still being assessed.
0.111 / 7
Repair work is ongoing in
0.122 / 11
Hawick and many roads in Peeblesshire
0.091 / 4
remain badly affected by
0.072 / 3
standing water.
-0.024 / 11
Trains on the west coast mainline face disruption due
0.018 / 11
to damage at the Lamington Viaduct.
0.044 / 12
Many businesses and householders were affected by flooding in Newton
0.045 / 11
Stewart after the River Cree overflowed into the town.
0.2 / 8
First Minister Nicola Sturgeon visited the area
0.169 / 5
to inspect the damage.
0.05 / 8
The waters breached a retaining wall,
0.078 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
1.295 / 15
Jeanette Tate, who owns the Cinnamon Cafe which was badly affected,
0.026 / 8
said she could not fault the multi-
0.118 / 7
agency response once the flood hit.
-0.123 / 3
However,
-0.147 / 7
she said more preventative work could
-0.068 / 8
have been carried out to ensure the retaining
-0.069 / 5
wall did not fail.
0.122 / 10
"It is difficult but I do think there
0.013 / 5
is so much publicity for
-0.02 / 3
Dumfries
-0.002
and
-0.124 / 4
the Nith -
-0.116 / 6
and I totally appreciate that -
-0.545 / 14
but it is almost like we're neglected or forgotten," she said.
-0.34 / 8
"That may not be true but
-0.329 / 11
it is perhaps my perspective over the last few days.
-0.173 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.254 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.143 / 10
Peebles was badly hit by problems,
0.121 / 10
sparking calls to introduce more defences in the area.
0.216 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.191 / 10
drivers have been urged not to ignore closure signs.
0.213 / 4
The Labour Party
0.96 / 5
's deputy Scottish leader Alex
0.011 / 8
Rowley was in Hawick on Monday
-0.015 / 7
to see the situation first hand.
-0.031 / 13
He said it was important to get the flood protection plan right
-0.003 / 9
but backed calls to speed up the process.
-0.012 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.182 / 8
"Obviously it is heart-breaking
-0.12 / 11
for people who have been forced out of their homes and
-0.533 / 13
the impact on businesses." He said it was important that "
-0.264 / 8
immediate steps" were taken to protect
0.017 / 9
the areas most vulnerable and a clear timetable put
-0.002 / 7
in place for flood prevention plans.
-0.073 / 4
Have you been
-0.03 / 4
affected by flooding in
-0.06 / 3
Dumfries
-0.048 / 3
and Galloway
-0.047
or
-0.048 / 2
the Borders
-0.046
?
0.092 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.034 / 15
uk or dumfries@bbc.co.uk.
-2-3-4-5-6-1012-2.10605-2.10605base value-1.04136-1.04136f.(inputs)1.295 Jeanette Tate, who owns the Cinnamon Cafe which was badly affected, 0.96 's deputy Scottish leader Alex 0.216 Scottish Borders Council has put a list on its website of the roads worst affected and 0.213 The Labour Party 0.2 First Minister Nicola Sturgeon visited the area 0.191 drivers have been urged not to ignore closure signs. 0.169 to inspect the damage. 0.151 one of the areas worst affected, is still being assessed. 0.143 Peebles was badly hit by problems, 0.122 "It is difficult but I do think there 0.122 Hawick and many roads in Peeblesshire 0.121 sparking calls to introduce more defences in the area. 0.118 agency response once the flood hit. 0.111 Repair work is ongoing in 0.108 The full cost 0.092 Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co. 0.091 remain badly affected by 0.081 of damage in Newton Stewart, 0.078 flooding many commercial properties on Victoria Street - the main shopping thoroughfare. 0.072 standing water. 0.05 The waters breached a retaining wall, 0.045 Stewart after the River Cree overflowed into the town. 0.044 Many businesses and householders were affected by flooding in Newton 0.034 uk or dumfries@bbc.co.uk. 0.026 said she could not fault the multi- 0.018 to damage at the Lamington Viaduct. 0.017 the areas most vulnerable and a clear timetable put 0.013 is so much publicity for 0.011 Rowley was in Hawick on Monday -0.545 but it is almost like we're neglected or forgotten," she said. -0.533 the impact on businesses." He said it was important that " -0.34 "That may not be true but -0.329 it is perhaps my perspective over the last few days. -0.264 immediate steps" were taken to protect -0.254 a flood alert remains in place across the Borders because of the constant rain. -0.182 "Obviously it is heart-breaking -0.173 "Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile, -0.147 she said more preventative work could -0.124 the Nith - -0.123 However, -0.12 for people who have been forced out of their homes and -0.116 and I totally appreciate that - -0.073 Have you been -0.069 wall did not fail. -0.068 have been carried out to ensure the retaining -0.06 Dumfries -0.048 and Galloway -0.048 the Borders -0.047 or -0.046 ? -0.031 He said it was important to get the flood protection plan right -0.03 affected by flooding in -0.024 Trains on the west coast mainline face disruption due -0.02 Dumfries -0.015 to see the situation first hand. -0.012 "I was quite taken aback by the amount of damage that has been done," he said. -0.003 but backed calls to speed up the process. -0.002 and -0.002 in place for flood prevention plans.
inputs
0.108 / 4
The full cost
0.081 / 6
of damage in Newton Stewart,
0.151 / 12
one of the areas worst affected, is still being assessed.
0.111 / 7
Repair work is ongoing in
0.122 / 11
Hawick and many roads in Peeblesshire
0.091 / 4
remain badly affected by
0.072 / 3
standing water.
-0.024 / 11
Trains on the west coast mainline face disruption due
0.018 / 11
to damage at the Lamington Viaduct.
0.044 / 12
Many businesses and householders were affected by flooding in Newton
0.045 / 11
Stewart after the River Cree overflowed into the town.
0.2 / 8
First Minister Nicola Sturgeon visited the area
0.169 / 5
to inspect the damage.
0.05 / 8
The waters breached a retaining wall,
0.078 / 14
flooding many commercial properties on Victoria Street - the main shopping thoroughfare.
1.295 / 15
Jeanette Tate, who owns the Cinnamon Cafe which was badly affected,
0.026 / 8
said she could not fault the multi-
0.118 / 7
agency response once the flood hit.
-0.123 / 3
However,
-0.147 / 7
she said more preventative work could
-0.068 / 8
have been carried out to ensure the retaining
-0.069 / 5
wall did not fail.
0.122 / 10
"It is difficult but I do think there
0.013 / 5
is so much publicity for
-0.02 / 3
Dumfries
-0.002
and
-0.124 / 4
the Nith -
-0.116 / 6
and I totally appreciate that -
-0.545 / 14
but it is almost like we're neglected or forgotten," she said.
-0.34 / 8
"That may not be true but
-0.329 / 11
it is perhaps my perspective over the last few days.
-0.173 / 27
"Why were you not ready to help us a bit more when the warning and the alarm alerts had gone out?" Meanwhile,
-0.254 / 15
a flood alert remains in place across the Borders because of the constant rain.
0.143 / 10
Peebles was badly hit by problems,
0.121 / 10
sparking calls to introduce more defences in the area.
0.216 / 18
Scottish Borders Council has put a list on its website of the roads worst affected and
0.191 / 10
drivers have been urged not to ignore closure signs.
0.213 / 4
The Labour Party
0.96 / 5
's deputy Scottish leader Alex
0.011 / 8
Rowley was in Hawick on Monday
-0.015 / 7
to see the situation first hand.
-0.031 / 13
He said it was important to get the flood protection plan right
-0.003 / 9
but backed calls to speed up the process.
-0.012 / 20
"I was quite taken aback by the amount of damage that has been done," he said.
-0.182 / 8
"Obviously it is heart-breaking
-0.12 / 11
for people who have been forced out of their homes and
-0.533 / 13
the impact on businesses." He said it was important that "
-0.264 / 8
immediate steps" were taken to protect
0.017 / 9
the areas most vulnerable and a clear timetable put
-0.002 / 7
in place for flood prevention plans.
-0.073 / 4
Have you been
-0.03 / 4
affected by flooding in
-0.06 / 3
Dumfries
-0.048 / 3
and Galloway
-0.047
or
-0.048 / 2
the Borders
-0.046
?
0.092 / 29
Tell us about your experience of the situation and how it was handled. Email us on selkirk.news@bbc.co.
0.034 / 15
uk or dumfries@bbc.co.uk.

Градиентные методы¶

Vanilla Gradient¶

Идея метода¶

Имея информацию о структуре модели, можно использовать градиент, чтобы понять, как входы связаны с выходом.

Градиент указывает направление возрастания функции. Если мы выберем logit, соответствующий метке наиболее вероятного класса, и посчитаем для него градиент по исходному изображению, мы можем узнать, какие пиксели нужно “усилить”, чтобы модель была более уверена в ответе.

Тут важно заметить, что пример из статьи на картинке выше — это cherry picked (специально отобранный пример, для которого данный метод дает хороший результат). Давайте посмотрим на нашей картинке.

Пример изображения (ResNet18)¶

Загрузим изображение

In [50]:
!wget -q 'https://edunet.kea.su/repo/EduNet-web_dependencies/dev-2.0/L14/cat_and_dog1.jpg' -O cat_and_dog1.jpg
!wget -q 'https://edunet.kea.su/repo/EduNet-web_dependencies/datasets/imagenet_class_index.json' -O imagenet_class_index.json
In [51]:
import os
import matplotlib.pyplot as plt
from PIL import Image


def get_image(path):
    with open(os.path.abspath(path), "rb") as f:
        with Image.open(f) as img:
            return img.convert("RGB")


img = get_image("cat_and_dog1.jpg")
plt.rcParams["figure.figsize"] = (5, 5)
plt.imshow(img)
plt.axis("off")
plt.show()

Теперь нам нужно преобразовать это изображение в тензор PyTorch, а также его нормализовать для использования в нашей предварительно обученной модели.

In [52]:
from torchvision import transforms


# resize & normalize


def get_input_transform():
    transform = transforms.Compose(
        [
            transforms.Resize(224),
            transforms.CenterCrop((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(
                mean=(0.485, 0.456, 0.406),
                std=(0.229, 0.224, 0.225),
            ),
        ]
    )
    return transform


# for get croped img from input tensor


def get_reverse_transform():
    transform = transforms.Compose(
        [
            transforms.Normalize(
                mean=(0.0, 0.0, 0.0), std=(1 / 0.229, 1 / 0.224, 1 / 0.225)
            ),
            transforms.Normalize(
                mean=(-0.485, -0.456, -0.406),
                std=(1.0, 1.0, 1.0),
            ),
            transforms.Lambda(lambda x: torch.permute(x, (0, 2, 3, 1))),
            transforms.Lambda(lambda x: x.detach().numpy()),
        ]
    )
    return transform


def get_input_tensors(img):
    transform = get_input_transform()
    # unsqeeze converts single image to batch of 1
    return transform(img).unsqueeze(0)


def get_crop_img(img_tensor):
    transform = get_reverse_transform()
    return transform(img_tensor)[0]

Загрузим предобученную модель ResNet18, доступную в PyTorch, и классы изображений из ImageNet.

In [53]:
import json
import torch
from torchvision import models

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = models.resnet18(weights="ResNet18_Weights.DEFAULT")

idx2label, cls2label, cls2idx = [], {}, {}
with open(os.path.abspath("/content/imagenet_class_index.json"), "r") as read_file:
    class_idx = json.load(read_file)
    idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]
    lable2idx = {class_idx[str(k)][1]: k for k in range(len(class_idx))}

Получим предсказание. А после этого полученные нами прогнозы (logits) пропустим через softmax, чтобы получить вероятности и метки классов для 6 лучших прогнозов.

In [54]:
print(type(img))
img_t = get_input_tensors(img)

model.to(device)
model.eval()
logits = model(img_t.to(device))
<class 'PIL.Image.Image'>
In [55]:
import torch.nn.functional as F


def top_k_class(logits, k=6):
    prediction = F.softmax(logits, dim=1)
    top_props, top_inds = prediction.topk(k)

    for i in range(k):
        category_name = idx2label[top_inds[0][i].item()]
        score = top_props[0][i].item()
        print(f"{category_name} {top_inds[0][i].item()}: {100 * score:.1f}%")


top_k_class(logits)
German_shepherd 235: 40.3%
tabby 281: 9.5%
tiger_cat 282: 6.9%
Egyptian_cat 285: 2.7%
space_heater 811: 2.3%
malinois 225: 1.2%

Включаем расчет градиента для изображения. Делаем предсказание. Выбираем наиболее вероятный logit.

In [56]:
img_t.requires_grad = True  # Tell pytorch to compute grads w.r.t. inputs too

logits = model(img_t.to(device))  # [1,1000] batch of one element, 1000 class scores
top_score, top_idx = logits[0].topk(1)  # Get id of class with best score
id = top_idx[0].item()

print(id, idx2label[id])  # Print the label this class

score = logits[:, id]  # Model output for particular class
235 German_shepherd

Для выхода модели, соответствующего нашему классу, рассчитываем градиент.

In [57]:
# Compute gradients
score.backward(retain_graph=True)

# retain_grad = True is not nessesary
# But if we run this code second time, we got a torch error without it
# because pytorch want to accumulate gradients explicitly

print(img_t.grad.shape)
torch.Size([1, 3, 224, 224])

У входного тензора (изображения) появился градиент, который указывает на то, как каждый элемент повлиял на выход модели. Отобразим этот градиент.

In [58]:
import numpy as np
from matplotlib import pylab as P


# Helper method to display grad
def grad_to_image(raw_grads, percentile=99):
    gradients = raw_grads.detach().cpu().numpy()
    gradients = np.transpose(gradients, (0, 2, 3, 1))[0]

    image_2d = np.sum(np.abs(gradients), axis=2)

    vmax = np.percentile(image_2d, percentile)
    vmin = np.min(image_2d)

    return np.clip((image_2d - vmin) / (vmax - vmin), 0, 1)


def plot_saliency_map(img_tensor, saliency_map):
    plt.rcParams["figure.figsize"] = (10, 5)
    plt.subplot(1, 2, 1)
    img = get_crop_img(img_t)
    plt.imshow(img)
    plt.axis("off")
    plt.subplot(1, 2, 2)
    plt.imshow(saliency_map, cmap=P.cm.gray, vmin=0, vmax=1)
    plt.axis("off")
    plt.show()
In [59]:
saliency_map = grad_to_image(img_t.grad)
plot_saliency_map(img_t, saliency_map)

Карта важности (saliency map), полученная таким образом, получается очень зашумленной.

Проблема насыщения (saturation)¶

Одним из недостатков карты важности (saliency map), полученной методом Vanilla Gradient, является проблема насыщения (saturation). Простыми словами эту проблему можно сформулировать так: если какой-то признак “идеально” характеризует объект как принадлежащий к определенному классу, то градиент этого признака по логиту этого класса будет нулевым. То есть Vanilla Gradient будет занижать важность очень хороших признаков.

Source: Learning Important Features Through Propagating Activation Differences

Более математично проблему можно описать так. Пусть $h$ — аналог активации некоторого нейрона, вычисляющийся как $$h=\max(0,1-i_1-i_2).$$

Если мы возьмем значения признаков $i_1=1$ и $i_2=1$, то на выходе получим значение $h=0$. Далее по очереди будем занулять значения каждого из признаков, внося таким образом пертурбации: $i_1=0$ и $i_2=1$, $i_1=1$ и $i_2=0$. В обоих случаях выход по-прежнему будет $h=0$. Может сложиться обманчивое впечатление, что ни один из признаков не влияет на результат вычисления. Таким образом, мы столкнулись с проблемой, заключающейся в том, что подход, основанный на изменении признаков, будет занижать значимость признаков, чей вклад в результат достиг насыщения. Аналогично градиентные методы также будут недооценивать важность признаков при насыщении, поскольку градиент в данном случае будет равным 0.

Проблема насыщения не является редкой. В частности, с ней можно столкнуться в биологии при построении моделей 🎓[article], объясняющих вклад единичных мутаций на то или иное свойство организма, что связано с вырожденностью генетического кода.

Adversarial attacks¶

Принцип взятия градиента по входу используется при состязательных атаках (adversarial attacks).

Если не просто визуализировать градиент, а с его помощью менять изображение, усиливая определенную метку класса, то можно обмануть сеть и заставить ее неверно классифицировать картинку, незначительно поменяв ее.

Подробнее:

  • [wiki] 📚 Adversarial machine learning
  • [blog] ✏️ Interpretable Machine Learning

SmoothGrad¶

Идея метода¶

Проблемой Vanilla Gradient Ascent является большая зашумленность карты важности. Было придумано несколько способов борьбы с этим, один из них был предложен в статье SmoothGrad: removing noise by adding noise 🎓[arxiv].

Как вы можете догадаться из названия статьи, идея SmoothGrad заключается в добавлении к исходному изображению $x$ гауссовского шума:

$$\large x+\mathcal{N}(0, \sigma^2).$$

Для набора зашумленных изображений с помощью Vanilla Gradient рассчитываются карты важности (saliency map):

$$\large M_c(x+\mathcal{N}(0, \sigma^2)).$$

Карты важности, полученные от зашумленных изображений, усредняются:

$$\large \text{SmoothGrad} = \frac{1}{n}\sum_{1}^{n}M_c(x+\mathcal{N}(0, \sigma^2)).$$
Source: SmoothGrad: removing noise by adding noise

В статье рекомендуют выбирать $n = 50$ и $10–20\%$ шума. Уровень шума определяют как отношение:

$$\large \frac{\sigma}{x_{\max}-x_{\min}}.$$

Пример изображения (ResNet18)¶

Для визуализации работы SmoothGrad используем код 🐾[git] c сайта ✏️[blog], посвященного статье 🎓[arxiv].

In [60]:
!pip install -q saliency
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 86.2/86.2 kB 3.1 MB/s eta 0:00:00

У кода есть особенность: нужно написать функцию call_model_function, вызывающую модель.

При этом любое изображение, поданное в метод GetMask класса GradientSaliency, будет преобразовано в np.array. К тому же, размеры входного изображения и карты важности на выходе должны совпадать, что осложняет использование torchvision.transforms.

In [61]:
import numpy as np
import saliency.core as saliency


model = models.resnet18(weights="ResNet18_Weights.DEFAULT")


def call_model_function(img, call_model_args=None, expected_keys=None):
    img_t = torch.tensor(np.transpose(img, (0, 3, 1, 2)))
    transform = transforms.Normalize(
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
    )
    img_t = transform(img_t)
    img_t.requires_grad_(True)

    model.to(device)
    model.eval()
    logits = model(img_t.float().to(device))

    top_score, top_idx = logits[0].topk(1)  # Get id of class with best score
    target_class_idx = top_idx[0].item()

    output = logits[:, target_class_idx]
    grads = torch.autograd.grad(
        output, img_t, grad_outputs=torch.ones_like(output)
    )  # output[:, target_class_idx]
    grads = torch.movedim(grads[0], 1, 3)
    gradients = grads.detach().numpy()
    return {saliency.base.INPUT_OUTPUT_GRADIENTS: gradients}

Получаем Vanilla Gradient, рассчитанный для исходного изображения с помощью установленной библиотеки, и результат SmoothGrad.

In [62]:
img = get_image("cat_and_dog1.jpg")
img_t = get_input_tensors(img)
img_arr = get_crop_img(img_t)

gradient_saliency = saliency.GradientSaliency()

vanilla_mask_3d = gradient_saliency.GetMask(img_arr, call_model_function)
smoothgrad_mask_3d = gradient_saliency.GetSmoothedMask(img_arr, call_model_function)

# Call the visualization methods to convert the 3D tensors to 2D grayscale.
vanilla_mask_grayscale = saliency.VisualizeImageGrayscale(vanilla_mask_3d)
smoothgrad_mask_grayscale = saliency.VisualizeImageGrayscale(smoothgrad_mask_3d)

Визуализируем результат:

In [63]:
from matplotlib import pylab as P


def ShowGrayscaleImage(im, title="", ax=None):
    if ax is None:
        P.figure()
    P.axis("off")
    P.imshow(im, cmap=P.cm.gray, vmin=0, vmax=1)
    P.title(title)


# Set up matplot lib figures.
plt.rcParams["figure.figsize"] = (15, 5)

plt.subplot(1, 3, 1)
plt.imshow(img_arr)
plt.axis("off")

ShowGrayscaleImage(
    vanilla_mask_grayscale, title="Vanilla Gradient", ax=P.subplot(1, 3, 2)
)
ShowGrayscaleImage(smoothgrad_mask_grayscale, title="SmoothGrad", ax=P.subplot(1, 3, 3))

Integrated Gradients¶

Идея метода¶

Следующий метод, который мы посмотрим, называется Integrated Gradients. Он напоминает SmoothGrad тем, что мы намеренно "портим" изображения. Давайте разберемся, как он работает.

В методе Integrated Gradients мы выбираем опорное изображение $x'$. В качестве опорного изображения используется черный фон (все нули по RGB-каналам). Оцениваемое изображение $x$ примешивают к опорному изображению $x’$ с пропорцией $\alpha$:

$$\large x'+\alpha(x-x')$$

Таким образом мы портим изображение и постепенно его восстанавливаем.

Source: Tensorflow tutorials: Integrated gradients

Для смеси изображений считается Vanilla Gradient:

$$\large M_c(x'+\alpha(x-x'))$$

Формула, лежащая в основе Integrated Gradients, была предложена в статье 🎓[arxiv]. Это — интегральное значение градиента при восстановлении изображения.

$$\large \text{IntegratedGrads}(x) = (x-x')\cdot\int_{\alpha=0}^1 M_c(x'+\alpha(x-x'))dα$$

Множитель $(x-x)’$ появился, т.к. изначально градиент был по $dx = (x-x’)d\alpha$.

В расчетах интеграл аппроксимируется суммой:

$$\large \text{IntegratedGrads}(x) \approx (x-x')\cdot\sum_{k=1}^m M_c(x'+\frac{k}{m}(x-x'))\cdot\frac{1}{m}$$

Значение $m$ выбирают в диапазоне от $20$ до $300$.

Пример результата:

Source: Tensorflow tutorials: Integrated gradients

Integrated Gradients частично решает проблему насыщения за счет изменения изображения.

Пример изображения (ResNet18)¶

In [64]:
! pip install -q captum
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 12.4 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 51.0 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 66.2 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 81.8 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.7/731.7 MB 1.2 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 1.3 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 9.7 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 12.1 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 7.6 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 6.3 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.0/166.0 MB 2.2 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 12.5 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.1/21.1 MB 55.9 MB/s eta 0:00:00
In [65]:
output = model(img_t.to(device))
output = F.softmax(output, dim=1)
prediction_score, pred_label_idx = torch.topk(output, 1)

pred_label_idx.squeeze_()
predicted_label = idx2label[pred_label_idx.item()]
print("Predicted:", predicted_label, "(", prediction_score.squeeze().item(), ")")
Predicted: German_shepherd ( 0.40307730436325073 )
In [66]:
from captum.attr import IntegratedGradients


integrated_gradients = IntegratedGradients(model)
attributions_ig = integrated_gradients.attribute(
    img_t.to(device), target=pred_label_idx, n_steps=200
)
In [67]:
saliency_map = grad_to_image(attributions_ig)

# Set up matplot lib figures.
plt.rcParams["figure.figsize"] = (20, 5)

plt.subplot(1, 4, 1)
plt.imshow(img_arr)
plt.axis("off")

ShowGrayscaleImage(
    vanilla_mask_grayscale, title="Vanilla Gradient", ax=P.subplot(1, 4, 2)
)
ShowGrayscaleImage(smoothgrad_mask_grayscale, title="SmoothGrad", ax=P.subplot(1, 4, 3))
ShowGrayscaleImage(saliency_map, title="Integrated Gradients", ax=P.subplot(1, 4, 4))

Пакет captum 🛠️[doc] можно использовать и для других модальностей данных, например, для NLP BERT ✏️[blog]. Там реализовано большое количество модификаций алгоритма Integrated Gradients и не только.

Grad-CAM¶

Развитием Gradient Ascent для сверточных нейронных сетей CNN является метод Grad-CAM (Gradient-weighted Class Activation Mapping).

alttext
Source: GradCAM – Enhancing Neural Network Interpretability in the Realm of Explainable AI

Идея метода¶

После каждого сверточного слоя нейронной сети мы получаем карты признаков, сохраняющие информацию о расположении объектов на исходном изображении. При этом все значения признаков для одного канала получаются одним и тем же преобразованием исходного изображения (получаются применением одинаковых сверток с одинаковыми весами), то есть один канал — это карта одного признака.

Посмотрим на карты признаков для ResNet18. Для этого загрузим модель вместе с весами.

Нам интересны сложные признаки, которые выделяются на последних сверточных слоях. ResNet18 был обучен на ImageNet с размерами входного изображения $224\times224$. Посмотрим на размеры на выходе последнего сверточного слоя.

In [68]:
from torchsummary import summary

model = models.resnet18(weights="ResNet18_Weights.DEFAULT")

summary(model.to("cpu"), (3, 224, 224), device="cpu")
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5           [-1, 64, 56, 56]          36,864
       BatchNorm2d-6           [-1, 64, 56, 56]             128
              ReLU-7           [-1, 64, 56, 56]               0
            Conv2d-8           [-1, 64, 56, 56]          36,864
       BatchNorm2d-9           [-1, 64, 56, 56]             128
             ReLU-10           [-1, 64, 56, 56]               0
       BasicBlock-11           [-1, 64, 56, 56]               0
           Conv2d-12           [-1, 64, 56, 56]          36,864
      BatchNorm2d-13           [-1, 64, 56, 56]             128
             ReLU-14           [-1, 64, 56, 56]               0
           Conv2d-15           [-1, 64, 56, 56]          36,864
      BatchNorm2d-16           [-1, 64, 56, 56]             128
             ReLU-17           [-1, 64, 56, 56]               0
       BasicBlock-18           [-1, 64, 56, 56]               0
           Conv2d-19          [-1, 128, 28, 28]          73,728
      BatchNorm2d-20          [-1, 128, 28, 28]             256
             ReLU-21          [-1, 128, 28, 28]               0
           Conv2d-22          [-1, 128, 28, 28]         147,456
      BatchNorm2d-23          [-1, 128, 28, 28]             256
           Conv2d-24          [-1, 128, 28, 28]           8,192
      BatchNorm2d-25          [-1, 128, 28, 28]             256
             ReLU-26          [-1, 128, 28, 28]               0
       BasicBlock-27          [-1, 128, 28, 28]               0
           Conv2d-28          [-1, 128, 28, 28]         147,456
      BatchNorm2d-29          [-1, 128, 28, 28]             256
             ReLU-30          [-1, 128, 28, 28]               0
           Conv2d-31          [-1, 128, 28, 28]         147,456
      BatchNorm2d-32          [-1, 128, 28, 28]             256
             ReLU-33          [-1, 128, 28, 28]               0
       BasicBlock-34          [-1, 128, 28, 28]               0
           Conv2d-35          [-1, 256, 14, 14]         294,912
      BatchNorm2d-36          [-1, 256, 14, 14]             512
             ReLU-37          [-1, 256, 14, 14]               0
           Conv2d-38          [-1, 256, 14, 14]         589,824
      BatchNorm2d-39          [-1, 256, 14, 14]             512
           Conv2d-40          [-1, 256, 14, 14]          32,768
      BatchNorm2d-41          [-1, 256, 14, 14]             512
             ReLU-42          [-1, 256, 14, 14]               0
       BasicBlock-43          [-1, 256, 14, 14]               0
           Conv2d-44          [-1, 256, 14, 14]         589,824
      BatchNorm2d-45          [-1, 256, 14, 14]             512
             ReLU-46          [-1, 256, 14, 14]               0
           Conv2d-47          [-1, 256, 14, 14]         589,824
      BatchNorm2d-48          [-1, 256, 14, 14]             512
             ReLU-49          [-1, 256, 14, 14]               0
       BasicBlock-50          [-1, 256, 14, 14]               0
           Conv2d-51            [-1, 512, 7, 7]       1,179,648
      BatchNorm2d-52            [-1, 512, 7, 7]           1,024
             ReLU-53            [-1, 512, 7, 7]               0
           Conv2d-54            [-1, 512, 7, 7]       2,359,296
      BatchNorm2d-55            [-1, 512, 7, 7]           1,024
           Conv2d-56            [-1, 512, 7, 7]         131,072
      BatchNorm2d-57            [-1, 512, 7, 7]           1,024
             ReLU-58            [-1, 512, 7, 7]               0
       BasicBlock-59            [-1, 512, 7, 7]               0
           Conv2d-60            [-1, 512, 7, 7]       2,359,296
      BatchNorm2d-61            [-1, 512, 7, 7]           1,024
             ReLU-62            [-1, 512, 7, 7]               0
           Conv2d-63            [-1, 512, 7, 7]       2,359,296
      BatchNorm2d-64            [-1, 512, 7, 7]           1,024
             ReLU-65            [-1, 512, 7, 7]               0
       BasicBlock-66            [-1, 512, 7, 7]               0
AdaptiveAvgPool2d-67            [-1, 512, 1, 1]               0
           Linear-68                 [-1, 1000]         513,000
================================================================
Total params: 11,689,512
Trainable params: 11,689,512
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 62.79
Params size (MB): 44.59
Estimated Total Size (MB): 107.96
----------------------------------------------------------------

На последнем сверточном слое получаем $512$ карт признаков $7\times7$. Для их сохранения напишем hook, в котором будем сохранять значения активации на выходе модели.

In [69]:
from collections import defaultdict


def get_forward_hook(history_dict, key):
    def forward_hook(self, input_, output):
        history_dict[key] = output.detach().clone()

    return forward_hook


def register_model_hooks(model):
    hooks_data_history = defaultdict(list)
    forward_hook = get_forward_hook(hooks_data_history, "feature_map")
    model._modules["layer4"].register_forward_hook(forward_hook)
    return hooks_data_history

Предобработаем картинку: приведем к размеру $224\times224$ и нормализуем изображение в соответствии со статистикой ImageNet.

In [70]:
img_t = get_input_tensors(img)

Пропустим картинку через сеть и сохраним значения активаций.

In [71]:
model = model.eval()
history = register_model_hooks(model)
output = model(img_t)

print(history["feature_map"].shape)
torch.Size([1, 512, 7, 7])

Нарисуем первые 6 карт признаков. Чтобы растянуть карты по размеру изображения, используем extent и interpolation='bilinear'.

In [72]:
plt.figure(figsize=(15, 10))

for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.imshow(img_arr)
    plt.imshow(
        history["feature_map"][0][i],
        alpha=0.6,
        extent=(0, 224, 224, 0),
        interpolation="nearest",
        cmap="jet",
    )
    plt.axis("off")

plt.show()

Вспомним предсказание модели.

In [73]:
import torch.nn.functional as F

number_of_top_classes = 6

prediction = F.softmax(output, dim=1)
top_props, top_inds = prediction.topk(number_of_top_classes)


for i in range(number_of_top_classes):
    category_name = idx2label[top_inds[0][i].item()]
    score = top_props[0][i].item()
    print(f"{category_name} {top_inds[0][i].item()}: {100 * score:.1f}%")
German_shepherd 235: 35.1%
tabby 281: 5.7%
tiger_cat 282: 3.4%
space_heater 811: 3.2%
Egyptian_cat 285: 2.6%
hamper 588: 1.5%

Мы смогли понять, к какой части изображения относятся те или иные признаки. Теперь попробуем понять, как они соотносятся с классом. Мы помним, что градиент указывает направление возрастания функции. Если мы выберем логит, соответствующий метке класса, и посчитаем для него градиент, то мы сможем увидеть, какие признаки имеют положительные значения (при их увеличении модель будет больше уверена в оценке).

Напишем хук для сохранения значения градиента. Мы смотрим значения градиента на выходе слоя перед AdaptiveAvgPool2d, поэтому сохраним только средние значения (значение градиента для карт признаков одного канала будет одинаковым).

In [74]:
def get_backward_hook(history_dict, key):
    def backward_hook(self, grad_input_, grad_output):  # for tensors
        history_dict[key] = (
            grad_output[0].detach().clone().mean(dim=[2, 3], keepdim=True)
        )

    return backward_hook


def register_model_hooks(model):
    hooks_data_history = defaultdict(list)

    forward_hook = get_forward_hook(hooks_data_history, "feature_map")
    model._modules["layer4"].register_forward_hook(forward_hook)

    backward_hook = get_backward_hook(hooks_data_history, "weight")
    model._modules["layer4"].register_full_backward_hook(backward_hook)
    return hooks_data_history

Итоговая формула Grad-CAM (Class activation maps):

$$\large \text{CAM} = \text{ReLU}(\sum_{i=1}^{Nch}w_iA_i)$$

где $A_i$ — каналы карты признаков, $w_i$ — веса, полученные пропусканием градиента по логиту, соответствующему метке класса. $\text{ReLU}$ используется потому, что нам интересны только положительно влияющие на метку класса признаки.

Функция, рассчитывающая CAM:

In [75]:
def get_cam_map(model, img, class_num):
    history = register_model_hooks(model)

    output = model.eval()(img)
    activation = history["feature_map"]

    output[0, class_num].backward()
    weight = history["weight"]

    cam_map = F.relu((weight[0] * activation[0]).sum(0)).detach().cpu()
    return cam_map

Визуализация важности признаков для top-6 классов:

In [76]:
plt.figure(figsize=(15, 10))

for i in range(6):
    cam_map = get_cam_map(model, img_t, top_inds[0][i])

    plt.subplot(2, 3, i + 1)
    plt.imshow(img_arr)
    plt.imshow(
        cam_map,
        alpha=0.6,
        extent=(0, 224, 224, 0),
        interpolation="nearest",
        cmap="jet",
    )
    plt.title(idx2label[top_inds[0][i].item()])
    plt.axis("off")

plt.show()
In [77]:
plt.figure(figsize=(15, 10))

for i in range(6):
    cam_map = get_cam_map(model, img_t, top_inds[0][i])

    plt.subplot(2, 3, i + 1)
    plt.imshow(img_arr)
    plt.imshow(
        cam_map,
        alpha=0.6,
        extent=(0, 224, 224, 0),
        interpolation="bilinear",
        cmap="jet",
    )
    plt.title(idx2label[top_inds[0][i].item()])
    plt.axis("off")

plt.show()

Пример изображения (ResNet18)¶

Можно сделать все то же самое с помощью библиотеки Grad-CAM.

In [78]:
!pip install -q grad-cam
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 26.0 MB/s eta 0:00:00
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
  Preparing metadata (pyproject.toml) ... done
  Building wheel for grad-cam (pyproject.toml) ... done
In [79]:
from pytorch_grad_cam import GradCAM

target_layers = [model._modules["layer4"]]

cam = GradCAM(model=model, target_layers=target_layers)
In [80]:
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

plt.figure(figsize=(15, 10))

for i in range(6):
    target = [ClassifierOutputTarget(top_inds[0][i])]
    cam_map = cam(input_tensor=img_t, targets=target)

    plt.subplot(2, 3, i + 1)
    plt.imshow(img_arr)
    plt.imshow(cam_map[0], alpha=0.6, interpolation="bilinear", cmap="jet")
    plt.title(idx2label[top_inds[0][i].item()])
    plt.axis("off")

plt.show()

В библиотеке также реализованы другие методы визуализации, например, Grad-CAM++, использующий производные второго порядка.

In [81]:
from pytorch_grad_cam import GradCAMPlusPlus

target_layers = [model._modules["layer4"]]
cam_plus = GradCAMPlusPlus(model=model, target_layers=target_layers)
In [82]:
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

plt.figure(figsize=(15, 10))

for i in range(6):
    target = [ClassifierOutputTarget(top_inds[0][i])]
    cam_map = cam_plus(input_tensor=img_t, targets=target)

    plt.subplot(2, 3, i + 1)
    plt.imshow(img_arr)
    plt.imshow(cam_map[0], alpha=0.6, interpolation="bilinear", cmap="jet")
    plt.title(idx2label[top_inds[0][i].item()])
    plt.axis("off")

plt.show()

Grad-CAM++ для ряда изображений работает лучше Grad-CAM.

alttext
Source: Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

Подробнее о других методах: Grad-Cam 🛠️[doc].

Критика градиентных методов¶

Градиентные методы имеют существенное преимущество перед SHAP и LIME: они вычисляются быстрее, чем методы, не зависящие от моделей. Но у них есть ряд недостатков. Недостаток в том, что в статьях, где предлагались такие методы, качество работы оценивалось визуально, “на глаз”.

Хорошим примером проблемы визуальной оценки является метод Guided Backpropagation, описанный в статье 🎓[arxiv].

[blog] ✏️ Объяснение метода и код.

alttext
Картинка получена применением модели ResNet18 и Guided Backpropagation

Интуитивно нам кажется, что Guided Backpropagation дает хорошее объяснение работы модели, потому что она выделяет границы, по которым легко узнать объект. В статье Sanity Checks for Saliency Maps 🎓[arxiv] показано, что данный метод инвариантен к рандомизации весов верхних слоев модели, что ставит под сомнение его способности объяснения работы модели.

alttext
Показан результат Guided Backpropagation при рандомизации слоев в модели Inception-v3, начиная с последнего. Source: Sanity Checks for Saliency Maps.

В статье Interpretation of Neural Networks is Fragile 🎓[arxiv] было показано, что небольшое случайное возмущение, добавленное к картинке, не влияющее на результат предсказания, может существенно поменять карты важности, что является спорной критикой, потому что на результат работы нейросети такое возмущение тоже может повлиять:

alttext
Source: Interpretation of Neural Networks is Fragile

В целом остается проблема 🎓[arxiv] оценки качества Saliency Maps. Это не значит, что градиентные методы нельзя использовать. Это значит, что нужно использовать их с осторожностью.

Методы, специфичные для трансформеров¶

В трансформерах есть механизм self-attention, который кажется естественным способом определить, какие токены текста/кусочки изображения имеют большую важность для предсказания.

Это бы отлично работало, будь у нас только один блок self-attention, но архитектура трансформера состоит из нескольких блоков кодера/декодера, расположенных друг за другом. От слоя к слою за счет того же self-attention информация в эмбеддингах перемешивается сильнее и сильнее. Так, например, для классификации текста мы можем использовать эмбеддинг на выходе BERT, соответствующий [CLS] токену, в котором на входе BERT не было никакой информации о последующем тексте.

Source: The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)

Кроме того, в стандартном блоке трансформера есть residual соединения. Из-за этого информация о токенах/патчах проходит не только через attention, но и через residual соединения.

Архитектура трансформера
Source: Attention Is All You Need

По этим причинам объяснение работы трансформера через attention — непростая задача.

Предупреждение: методы объяснения attention только частично объясняют работу трансформера, они разнообразны и могут давать противоречивые результаты.

Давайте для начала немного поизучаем, как выглядят значения self-attention в трансформерах. Подгружаем библиотеку.

In [83]:
!pip install -q transformers[sentencepiece]

Возьмем базовый русскоязычный разговорный BERT от Deep Pavlov 🛠️[doc], обученный 🛠️[doc] для определения эмоциональной окраски коротких русских текстов. Загружаем токенизатор и модель. Ставим флаг output_attentions=True, чтобы модель возвращала значения attention.

In [84]:
import transformers
from transformers import BertTokenizerFast, AutoModelForSequenceClassification
from IPython.display import clear_output

tokenizer = BertTokenizerFast.from_pretrained(
    "blanchefort/rubert-base-cased-sentiment",
)
model = AutoModelForSequenceClassification.from_pretrained(
    "blanchefort/rubert-base-cased-sentiment",
    output_attentions=True,  # for save attention
)
clear_output()

Готовим предложения.

In [85]:
sentences = [
    "Мама мыла раму",
    "Фильм сделан откровенно плохо",
    "Максимально скучный сериал, где сюжет высосан из пальца",
    "Я был в восторге",
    "В общем, кино хорошее и есть много что пообсуждать",
]

tokens = [
    ["[cls]"] + tokenizer.tokenize(sentence) + ["[sep]"] for sentence in sentences
]

Посмотрим, как разбивается на токены предложение. На выходе токенизатора номера токенов.

In [86]:
item = 0
print(f"Tokens: {tokens[item]}")
token_ids = [tokenizer.encode(sentence) for sentence in sentences]
print(f"Token ids: {token_ids[item]}")
Tokens: ['[cls]', 'Мама', 'мыла', 'раму', '[sep]']
Token ids: [101, 10871, 49053, 53954, 102]

Посмотрим на предсказания модели, чтобы проверить, насколько она адекватна.

In [87]:
import torch


ans = {0: "NEUTRAL", 1: "POSITIVE", 2: "NEGATIVE"}

for item in range(5):
    input_ids = torch.tensor([token_ids[item]])
    model_output = model(input_ids)
    predicted = torch.argmax(model_output.logits, dim=1).numpy()
    print(f"Text: {sentences[item]}")
    print(f"Predict lable = {predicted}, {ans[predicted.item()]}")
Text: Мама мыла раму
Predict lable = [0], NEUTRAL
Text: Фильм сделан откровенно плохо
Predict lable = [2], NEGATIVE
Text: Максимально скучный сериал, где сюжет высосан из пальца
Predict lable = [2], NEGATIVE
Text: Я был в восторге
Predict lable = [1], POSITIVE
Text: В общем, кино хорошее и есть много что пообсуждать
Predict lable = [0], NEUTRAL

В данной модели 12 слоев (блоков трансформеров), поэтому модель возвращает кортеж из 12 тензоров. Каждый слой имеет 12 голов self-attention.

In [88]:
item = 1
input_ids = torch.tensor([token_ids[item]])
model_output = model(input_ids)

attentions = model_output.attentions
print(f"Text: {sentences[item]}")
print(f"Tokens: {tokens[item]}")
print(f"Number of layers: {len(attentions)}")
print(
    f"Attention size: {attentions[0].shape} "
    "[batch x attention_heads x seq_size x seq_size]"
)
Text: Фильм сделан откровенно плохо
Tokens: ['[cls]', 'Фильм', 'сделан', 'откровенно', 'плохо', '[sep]']
Number of layers: 12
Attention size: torch.Size([1, 12, 6, 6]) [batch x attention_heads x seq_size x seq_size]

Преобразуем в однородный массив для удобства манипуляций.

Код этой части лекции основана на:

  • [git] 🐾 Attention flow,
  • [arxiv] 🎓 Quantifying Attention Flow in Transformers (Abnar, Zuidema, 2020).
In [89]:
import numpy as np


def to_array(attentions):
    attentions_arr = [attention.detach().numpy() for attention in attentions]
    return np.asarray(attentions_arr)[:, 0]


attentions_arr = to_array(attentions)
print(
    f"Shape: {attentions_arr.shape} " "[layers x attention_heads x seq_size x seq_size]"
)
print(f"Type: {type(attentions_arr)}, Dtype: {attentions_arr.dtype}")
Shape: (12, 12, 6, 6) [layers x attention_heads x seq_size x seq_size]
Type: <class 'numpy.ndarray'>, Dtype: float32

Посмотрим на нулевую голову нулевого слоя:

In [90]:
import seaborn as sns
import matplotlib.pyplot as plt

x_ticks = tokens[item]
y_ticks = tokens[item]

sns.heatmap(
    data=attentions_arr[0][0],
    vmin=0,
    vmax=1,
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

Тут по оси x — токены, на которые смотрит внимание, по оси y — токены, куда записывается результат прохождения слоя.

Так для слова “плохо” первая голова внимания первого слоя больше всего смотрит на слова “фильм” и “ откровенно”.

Для визуализации внимания можно использовать библиотеку BertViz 🛠️[doc]:

  • [arxiv] 🎓 Visualizing Attention in Transformer-Based Language Representation Models (Vig, 2019),
  • [colab] 🥨 BertViz Interactive Tutorial.
In [91]:
!pip install -q bertviz
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 157.6/157.6 kB 5.0 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 139.3/139.3 kB 10.1 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.0/12.0 MB 33.9 MB/s eta 0:00:00
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 82.1/82.1 kB 12.2 MB/s eta 0:00:00

Тут Layer — это выбор слоя, цвета — головы self-attention, слева — куда записывается, справа — на какие токены смотрит. Яркость соединяющих линий — величина attention (чем ярче, тем больше). Картину, аналогичную картине выше, можно получить, дважды щелкнув на первый синий квадрат.

In [92]:
import bertviz
from bertviz import head_view

head_view(model_output.attentions, tokens[item])
Layer:

Усредним значения по головам:

In [93]:
attention_head_mean = attentions_arr.mean(axis=1)
print(f"{attention_head_mean.shape} [layers x seq_size x seq_size]")
(12, 6, 6) [layers x seq_size x seq_size]

Посмотрим на усредненное по головам внимание на первом слое:

In [94]:
x_ticks = tokens[item]
y_ticks = tokens[item]

sns.heatmap(
    data=attention_head_mean[0],
    vmin=0,
    vmax=1,
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

И на последнем слое:

In [95]:
x_ticks = tokens[item]
y_ticks = tokens[item]

sns.heatmap(
    data=attention_head_mean[-1],
    vmin=0,
    vmax=1,
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

Видно, что на последнем слое внимание распределено между токенами практически равномерно.

Посмотрим на значения внимания для записываемого в эмбеддинг [CLS] токена (эмбеддинг с него используется для классификации).

In [96]:
x_ticks = tokens[item][1:-1]
y_ticks = [i for i in range(12, 0, -1)]

sns.heatmap(
    data=np.flip(attention_head_mean[:, 0, 1:-1], axis=0),
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

Видно, что после 6-го слоя значения внимания выравниваются. Это связано с тем, что механизм self-attention смешивает информацию о токенах.

Residual connection

Давайте сначала определимся, что делать с residual соединениями.

Residual соединение можно записать как

$$ \large V_{l+1} = V_l + W_{att}V_l,$$

где $W_{att}$ — матрица внимания, а $V_l$ — эмбеддинги.

После нормализации это можно переписать как

$$\large A=0.5W_{att}+0.5I,$$

где $I$ — единичная матрица.

[arxiv] 🎓 Quantifying Attention Flow in Transformers (Abnar, Zuidema, 2020)

In [97]:
def residual(attention_head_mean):
    attention_residual = (
        0.5 * attention_head_mean
        + 0.5 * np.eye(attention_head_mean.shape[1])[None, ...]
    )
    return attention_residual


attention_res = residual(attention_head_mean)

x_ticks = tokens[item][1:-1]
y_ticks = [i for i in range(12, 0, -1)]

sns.heatmap(
    data=np.flip(attention_res[:, 0, 1:-1], axis=0),
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

Attention rollout¶

“Разворачивание внимания” (Attention rollout) — предложенный в статье 🎓[arxiv] способ отслеживания информации, распространяемой от входного к выходному блоку, в котором значение внимания рассматривается как доля пропускаемой информации. Доли информации перемножаются и суммируются. Итоговая формула — рекурсивное матричное перемножение.

\begin{align} \widetilde{A}(l_i) = \left\{ \begin{array}{cl} A(l_i)\widetilde{A}(l_{i-1}) & i>0 \\ A(l_i) & i = 0. \end{array} \right. \end{align}
In [98]:
def rollout(attention_res):
    rollout_attention = np.zeros(attention_res.shape)
    rollout_attention[0] = attention_res[0]
    n_layers = attention_res.shape[0]
    for i in range(1, n_layers):
        rollout_attention[i] = attention_res[i].dot(rollout_attention[i - 1])
    return rollout_attention
In [99]:
rollout_attention = rollout(attention_res)
In [100]:
x_ticks = tokens[item][1:-1]
y_ticks = [i for i in range(12, 0, -1)]

sns.heatmap(
    data=np.flip(rollout_attention[:, 0, 1:-1], axis=0),
    xticklabels=x_ticks,
    yticklabels=y_ticks,
    cmap="YlOrRd",
)

plt.show()

Реализации от HuggingFace:

  • [git] 🐾 Для ViT и картинок
  • [git] 🐾 На PyTorch Rollout для BERT и некоторых других методов
  • [demo] 🎮 Attention Rollout — RoBERTa

Attention Flow¶

Другим вариантом рассмотрения распространения внимания является attention flow. В нем трансформер представляют в виде направленного графа, узлы которого представляют собой эмбеддинги между слоями, а ребра — связи в виде attention с ограниченной емкостью (передающей способностью).

Source: Bert Example

В такой постановке задача нахождения роли токенов/частей изображения в результирующем эмбеддинге сводится к задаче о максимальном потоке 📚[wiki] (задача нахождения такого потока по транспортной сети, что сумма потоков в пункт назначения была максимальна). Это известная алгоритмическая задача, которую мы не будем разбирать в рамках этого курса.

  • [git] 🐾 Attention flow
  • [arxiv] 🎓 Quantifying Attention Flow in Transformers (Abnar, Zuidema, 2020)

Gradient-weighted Attention Rollout¶

Метод, объединяющий GradCam и Attention Rollout, позволяет оценить положительный и отрицательный вклад токенов / частей изображения в итоговый результат.

  • [article] 🎓 Transformer Interpretability Beyond Attention Visualization (Chefer et.al., 2021)
  • [git] 🐾 Attention Rollout
  • [demo] 🎮 Attention Rollout — RoBERTa

Методы, основанные на механизме внимания, только частично объясняют работу трансформера и на сегодняшний день не являются надежным методом оценки важности признаков.

Заключение¶

  • Мы убедились в важности интерпретации работы моделей машинного обучения.
  • Рассмотрели основные методы, которые используются для оценки важности признаков: мы начали с классических методов, посмотрели на Model-Agnostic методы, градиентные методы, методы, специфичные для трансформеров.
  • Рассмотрели применение библиотек на примерах:
    • Табличные данные
    • NLP (машинный перевод текста, создание резюме статьи и классификации текстов)
    • CV

Пренебрежение объяснением того, почему модель дала тот или иной результат, ведет к недоверию по отношению не только к самой модели, но и к конкретным прогнозам, и, следовательно, является существенным препятствием для внедрения вашей модели или публикации статьи в научном журнале.

Литература

Объяснимость моделей классического ML:

  • [book] 📚 A Guide for Making Black Box Models Explainable. Chapter 5: Interpretable Models

LIME, SHAP:

  • [arxiv] 🎓 “Why Should I Trust You?” Explaining the Predictions of Any Classifier (Ribeiro et al., 2016)
  • [blog] ✏️ Local Interpretable Model-Agnostic Explanations (LIME): An Introduction
  • [git] 🐾 Using LIME with PyTorch (tutorial)
  • [git] 🐾 Fetching data, training a classifier (tutorial)
  • [book] 📚 SHAP (SHapley Additive exPlanations)
  • [book] 📚 Элементы теории кооперативных игр
  • [arxiv] 🎓 A Unified Approach to Interpreting Model Predictions (Lundberg, Lee, 2017)
  • [git] 🐾 Machine Translation Explanations
  • [arxiv] 🎓 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., 2019.

Градиентные методы:

  • [arxiv] 🎓 Learning Important Features Through Propagating Activation Differences (Shrikumar et. al., 2019)
  • [wiki] 📚 Adversarial machine learning
  • [blog] ✏️ Interpretable Machine Learning
  • [arxiv] 🎓 SmoothGrad: removing noise by adding noise (Smilkov et. al., 2017)
  • [git] 🐾 Computing saliency masks with the PAIRML saliency library (for PyTorch and other frameworks)
  • [blog] ✏️ PAIR Saliency Methods
  • [arxiv] 🎓 Axiomatic Attribution for Deep Networks (Sundararajan et al., 2017)
  • [blog] ✏️ Interpreting BERT Models (Part 2)
  • [blog] ✏️ GradCAM – Enhancing Neural Network Interpretability in the Realm of Explainable AI
  • [arxiv] 🎓 Striving for Simplicity: The All Convolutional Net (Springenberg et el., 2015).
  • [blog] ✏️ Deep Learning: Guided Backpropagation
  • [arxiv] 🎓 Sanity Checks for Saliency Maps (Adebayo et al., 2020)
  • [arxiv] 🎓 Interpretation of Neural Networks is Fragile (Ghorbani et al., 2018)
  • [arxiv] 🎓 Sanity Checks for Saliency Metrics (Tomsett et al. 2019)

Методы, специфичные для трансформеров:

  • [arxiv] 🎓 Quantifying Attention Flow in Transformers (Abnar, Zuidema, 2020)
  • [git] 🐾 Attention flow
  • [arxiv] 🎓 Visualizing Attention in Transformer-Based Language Representation Models (Vig, 2019)
  • [colab] 🥨 BertViz Interactive Tutorial
  • [arxiv] 🎓 Quantifying Attention Flow in Transformers (Abnar, Zuidema, 2020)
  • [git] 🐾 Для ViT и картинок
  • [git] 🐾 На PyTorch Rollout для BERT и некоторых других методов
  • [demo] 🎮 Attention Rollout — RoBERTa
  • [article] 🎓 Transformer Interpretability Beyond Attention Visualization (Chefer et.al., 2021)

Дополнительно:

  • [blog] ✏️ Machine Learning Explainability vs Interpretability: Two concepts that could help restore trust in AI
  • [video] 📺 How to Interpret Machine Learning Models with SHAP
  • [book] 📚 Machine Learning Explainability — бесплатный курс от Kaggle
  • [arxiv] 🎓 Explainable AI in Credit Risk Management (Misheva et al., 2021)
  • [arxiv] 🎓 Predicting Driver Fatigue in Automated Driving with Explainability (Zhou et al., 2021)
  • [arxiv] 🎓 Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods (Slack et al., 2020)
  • [doc] 🛠️ Welcome to the SHAP documentation
  • [git] 🐾 SHAP
  • [arxiv] 🎓 What does LIME really see in images? (Garreau, Mardaoui, 2021)
  • [git] 🐾 LIME