

ЛЕКЦИЯ ОТ ПРИГЛАШЕННОГО ЭКСПЕРТА

# Deep Learning for Quantum Chemistry

#### Кузьма Храбров

**DL** in Life Sciences, AIRI





### Molecular conformation

Molecular conformation is a spatial arrangement of atoms in a molecule

Key characteristic of a conformation is a potential energy, which exact form depends on a method





# Molecular conformation. Bolzman Law

The log probability of a conformation is proportional to the negative energy.

$$p_{conf} \propto e^{\frac{-E_{conf}}{kT}}$$







интеллект

♦ AIRI \$\$ MSU.AI

#### Conformational energy Handcrafted force fields (eg.: MMFF)

$$E_{MMFF} = \sum EB_{ij} + \sum EA_{ijk} + \sum EBA_{ijk}$$
$$+ \sum EOOP_{ijkl} + \sum ET_{ijkl} + \sum EvdW_{ij} + \sum EQ_{ijkl}$$





 $\widehat{H}\Psi = E\Psi$ 

💽 AIRI 🛠 MSU.AI

### Conformational energy Quantum force fields





интеллек



# Density Functional Theory (DFT)

The highly nontrivial 3N-variable equation is simplified to 3-variable one via Hohenberg-Kohn theorems.





# Density Functional Theory (DFT)

- First Hohenberg-Kohn theorem: The ground state properties of a many-electron system depend only on the electronic density n(x,y,z)
- Second Hohenberg-Kohn theorem: The correct ground state density for a system is the one that minimizes the total energy through the functional E[n(x,y,z)]



**Deep learning for Quantum Chemistry** 



 $n(\vec{r}) = 2\sum_{i} \psi_{i}^{*}(\vec{r}) \psi_{i}(\vec{r})$  $\psi_{i} = \sum_{j} C_{ij} \phi_{j}$ 

#### $HC = \epsilon SC$

$$H_{ij} = \int \phi_i^*(\mathbf{r}) \hat{H}_{el} \phi_j(\mathbf{r}) d\mathbf{r}$$
$$S_{ij} = \int \phi_i^*(\mathbf{r}) \phi_j(\mathbf{r}) d\mathbf{r}$$

https://www.nature.com/articles/s41467-019-12875-2



# Neural force fields

There are many different neural network models to predict a conformational energy, atomic forces, or a DFT Hamiltonian for a given molecular conformation.

#### **Basic concept**

In general, models include three main units:

- 1. Embedding block
- 2. Interaction
- 3. Output



🕑 AIRI 😚 MSU.AI

#### Datasets

Starting with the SchNet vast majority of proposed models are tested in a very simple settings.

#### QM9

consists of ≈130k organic molecules with up to 9 heavy atoms of the types {C, O, N, F}

#### **MD17**

contains trajectories from molecular dynamics simulations of 8 molecules

#### ISO17

contains short MD trajectories for 129 isomers of C7O2H10



💽 AIRI 🛠 MSU.AI

### nablaDFT dataset and benchmark

To avoid an overfitting in toy settings we published our own dataset and benchmarked several recent models.



github.com/AIRI-Institute/nablaDFT





### Machine Learning Framework







### **Graph Convolution Nets**





### Message passing

Message passing is an algorithm for inference on graphical models.

At every step of the message passing, every node has a state, which updates during the process. Each node send a message to all its neighbors computed as function of the node and neighbor states.



$$X_{v}^{(k)} = \sigma \left( W_{0} X_{v}^{(k-1)} + W_{1} \sum_{u \in N(v)} X_{u}^{(k-1)} + b \right)$$



♦ AIRI \$ MSU.AI

# Graph convolutional networks

| 0-0 | 1-0 | 2-0 | 3-0 | 4-0 |
|-----|-----|-----|-----|-----|
| 0-1 | 1-1 | 2-1 | 3-1 | 4-1 |
| 0-2 | 1-2 | 2-2 | 3-2 | 4-2 |
| 0-3 | 1-3 | 2-3 | 3-3 | 4-3 |
| 0-4 | 1-4 | 2-4 | 3-4 | 4-4 |

2-1 3-1 4-1 0-2 1-2 2-2 3-2 4-2 0-3 1-3 2-3 3-3 4-3 0-4 1-4 2-4 3-4 4-4



e i i

Image Pixels

Фонд интеллект

Adjacency Matrix

# Message passing

Message passing is an algorithm for inference on graphical models.

At every step of the message passing, every node has a state, which updates during the process. Each node send a message to all its neighbors computed as function of the node and neighbor states.





# SchNet

SchNet is trained to predict a conformational energy together with atomic forces given desired force field.

#### **Key features**

 $\rightarrow$  E(3) invariant

- $\rightarrow$  Intermolecular distances embedded with RBFs
- → Atomic forces are computed in the form of an energy gradient

$$\mathcal{L}[(\hat{E}), (E, F)] = \left\| E - \hat{E} \right\|^2 + \frac{\rho}{n} \sum_{i=1}^n \left\| F_i - \left( -\frac{\partial \hat{E}}{\partial r_i} \right) \right\|^2$$
$$\widehat{F}_i(Z_1, \dots, Z_n, r_1, \dots, r_n) = -\frac{\partial \hat{E}}{\partial r_i}(Z_1, \dots, Z_n, r_1, \dots, r_n)$$





AIRI SMSU.AI

📀 🔿 🖓 🖓 🖓 🖓

# DimeNet++

#### DimeNet uses angular information during the message passing

in addition to pairwise distances. (<u>https://arxiv.org/abs/2011.14115</u>)



# SchNOrb

In addition to conformational energy prediction, SchNOrb model is trained to predict DFT Hamiltonian matrix within a given basis set.

#### **Key features**

- $\rightarrow$  E(3) invariant for energy only
- $\rightarrow$  Combined loss for energy and Hamiltonian
- → Atomic forces are computed in the form of an energy gradient





$$\mathcal{L}[(\widehat{E},\widehat{H}),(E,H,F)] = \left\|E - \widehat{E}\right\|^{2} + \left\|H - \widehat{H}\right\|^{2} + \frac{\rho}{n} \sum_{i=1}^{n} \left\|F_{i} - \left(-\frac{\partial \widehat{E}}{\partial r_{i}}\right)\right\|^{2}$$

www.nature.com/articles/s41467-019-12875-2



#### ♦ AIRI \$ MSU.AI

# PhiSNet

#### **Key features**

Фонд

интеллект

- $\rightarrow$  E(3)-equivariant features and predictions
- $\rightarrow$  Combined loss for energy and Hamiltonian







openreview.net/forum?id=auGY2UQfhSu



### **Geometry optimization**





♦ AIRI \$\$ MSU.AI

# Molecular geometry optimization with NNs.

Based on our research of quantum properties of small molecules we develop a model for molecular geometry optimization with the quality on par with traditional physical simulators.





#### Idea

Classical geometry optimization pipeline is an analog of the gradient descent algorithm



The idea is to replace the the gradient descent with Active learning or Reinforcement learning



### Conformation optimization as RL problem

States:  $s \in \mathbb{R}^{3 \times n_{atoms}}$  — atoms' 3D-coordinates.

Actions:  $a \in \mathbb{R}^{3 \times n_{atoms}}$  — coordinates shifts.

Reward:  $r = -(E_{s'} - E_s) - \alpha ||F_{s'} - F_s||$ , so the agent's goal is to minimize the energy and forces difference. Energies and forces for the initial and final states are taken from physical simulators or baseline models.

Transition function:  $P(s'|s, a) = \delta(s + a)$ 



### **RL-agent architecture**

We use one of molecular GNN as a backbone, and compute pairwise shifts in relative coordinates, so the transition becomes SE(3)-equivariant.

Shifts are computed the following way:

- 1. At first we calculate the matrix of pairwise directions:  $P \in \mathbb{R}^{n_{atoms} \times n_{atoms}}$ , where  $P_{i,j} = \frac{r_i - r_j}{\|r_i - r_j\|}$
- 2. Afterwards the coefficients are predicted :  $A_{shift} = K_{\mu}V_{\mu}^{T}$ , where  $K_{\mu}$  and  $V_{\mu} \in \mathbb{R}^{n\_atoms \times emb\_size}$
- 3. Finally the shifts are calculated in the following way:  $a \sim tanh(Normal(A_{shift} * P, \sigma)) * action_scale$ , during training  $a \sim tanh(A_{shift} * P) * action_scale$ , during inference.



Фонд

интеллект

💽 AIRI 🛠 MSU.AI

#### **RL-agent architecture**





Фонд

интеллект



#### **Drug discovery**





📀 AIRI 🔅 MSU.AI

# DL in drug discovery

- The traditional process of new drug discovery is notoriously long and expensive.
- Key goal is to construct new chemical structures possessing desired properties.
- Traditional virtual screening approach **limited** to the databases of already known drug candidates and is not capable of designing novel drugs
- Most of existing DL approaches **do not take** into consideration the **target protein**



# DL problem

Design a framework for generation of novel molecules with desired objectives.

One possible objective is Docking score, which is an approximate prediction of the binding affinity.



Фонд

интеллект

♦ AIRI \$ MSU.AI

# Theory and Algorithms



 ${\cal O}$  - objective to be optimized

$$r_{t+1} = O(s_{t+1}) - O(s_t) \text{ or } r_{t+1} = \begin{cases} 0 & \text{if } s_{t+1} \text{ is non-terminal;} \\ O(s_{t+1}) & \text{if } s_{t+1} \text{ is terminal.} \end{cases}$$



♦ AIRI \$\$ MSU.AI

# **Theory and Algorithms**







@AIRI\_Research\_Institute

Фонд интеллект



#### airi\_research\_institute





AIRI Institute



<u>AIRI\_inst</u>



artificial-intelligence-research-institute

