


Molecular conformation
Molecular conformation 
is a spatial arrangement 
of atoms in a molecule

Key characteristic of 
a conformation is a potential 
energy, which exact form 
depends on a method
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Molecular conformation. 
Bolzman Law

The log probability of a conformation is proportional 
to the negative energy.
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Conformational energy
Handcrafted force fields (eg.: MMFF) 
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𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝐸𝐸𝐵𝐵𝑖𝑖𝑖𝑖 + �𝐸𝐸𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘 + �𝐸𝐸𝐵𝐵𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘

+�𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 + �𝐸𝐸𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 + �𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + �𝐸𝐸𝑄𝑄𝑖𝑖𝑖𝑖



Conformational energy
Quantum force fields 
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Density Functional Theory (DFT)
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The highly nontrivial 3N-variable equation is simplified to 3-variable one 
via Hohenberg-Kohn theorems.



Density Functional Theory (DFT)
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https://www.nature.com/articles/s41467-019-12875-2



Neural force fields
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There are many different neural network models to predict a conformational 
energy, atomic forces, or a DFT Hamiltonian for a given molecular conformation.

Basic concept 
In general, models include three main units:

1. Embedding block

2. Interaction

3. Output



Datasets
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Starting with the SchNet vast majority of proposed models 
are tested in a very simple settings.

QM9
consists of ≈130k organic 
molecules with up to 9 heavy 
atoms of the types {C, O, N, F}

MD17
contains trajectories from 
molecular dynamics simulations 
of 8 molecules

ISO17
contains short MD 
trajectories for 129 
isomers of C7O2H10



nablaDFT dataset and benchmark
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To avoid an overfitting in toy settings we published our own dataset 
and benchmarked several recent models.

github.com/AIRI-Institute/nablaDFT

https://github.com/AIRI-Institute/nablaDFT
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Machine Learning Framework



Graph Convolution Nets
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Message passing
Message passing is an algorithm for inference on 
graphical models. 

At every step of the message passing, every node 
has a state, which updates during the process. Each 
node send a message to all its neighbors computed 
as function of the node and neighbor states.
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Graph convolutional 
networks
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Message passing
Message passing is an algorithm for inference on 
graphical models. 

At every step of the message passing, every node 
has a state, which updates during the process. Each 
node send a message to all its neighbors computed 
as function of the node and neighbor states.
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SchNet
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SchNet is trained to predict a conformational energy together with atomic forces given 
desired force field.
Key features
→ E(3) invariant
→ Intermolecular distances embedded with RBFs
→ Atomic forces are computed in the form 

of an energy gradient
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DimeNet++
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DimeNet uses angular information during the message passing 
in addition to pairwise distances. (https://arxiv.org/abs/2011.14115)

𝒎𝒎𝑖𝑖𝑖𝑖
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https://arxiv.org/abs/2011.14115


SchNOrb
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In addition to conformational energy prediction, SchNOrb model is trained to predict 
DFT Hamiltonian matrix within a given basis set.

Key features
→ E(3) invariant for energy only
→ Combined loss for energy and Hamiltonian
→ Atomic forces are computed in the form 

of an energy gradient
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PhiSNet
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Key features
→ E(3)-equivariant features and predictions
→ Combined loss for energy and Hamiltonian

openreview.net/forum?id=auGY2UQfhSu



Geometry optimization
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Molecular geometry optimization with NNs.
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Based on our research of quantum properties of small molecules we develop a model for 
molecular geometry optimization with the quality on par with traditional physical 
simulators.



Idea
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Classical geometry optimization pipeline is an analog of the gradient descent algorithm

F F F F F

AL AL

The idea is to replace the the gradient descent with Active learning or Reinforcement learning 

RL RL



Conformation optimization as RL problem
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States: 𝑠𝑠 ∈ ℝ3×𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 — atoms’ 3D-coordinates.

Actions: a ∈ ℝ3×𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 — coordinates shifts.

Reward: 𝑟𝑟 = − 𝐸𝐸𝑠𝑠′ − 𝐸𝐸𝑠𝑠 - 𝛼𝛼 𝐹𝐹𝑠𝑠′ − 𝐹𝐹𝑠𝑠 , so the agent’s goal is to minimize the energy and forces 
difference. Energies and forces for the initial and final states are taken from physical simulators 
or baseline models.
Transition function: 𝑂𝑂 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 = 𝛿𝛿 𝑠𝑠 + 𝑎𝑎

RL RL
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RL-agent architecture
We use one of molecular GNN as a backbone, and compute pairwise shifts in relative 
coordinates, so the transition becomes SE(3)-equivariant.

Shifts are computed the following way:
1. At first we calculate the matrix of pairwise directions:

𝑷𝑷 ∈ ℝ𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎×𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎, where 𝑷𝑷𝑖𝑖,𝑖𝑖 = 𝒓𝒓𝑖𝑖−𝒓𝒓𝑗𝑗
𝒓𝒓𝑖𝑖−𝒓𝒓𝑗𝑗

2. Afterwards the coefficients are predicted :
𝑨𝑨𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑢𝑢 = 𝑲𝑲𝜇𝜇𝑽𝑽𝜇𝜇𝑘𝑘, where 𝑲𝑲𝜇𝜇 and 𝑽𝑽𝜇𝜇 ∈ ℝ𝑐𝑐_𝑢𝑢𝑢𝑢𝑐𝑐𝑎𝑎𝑠𝑠×𝑢𝑢𝑎𝑎𝑒𝑒_𝑠𝑠𝑖𝑖𝑠𝑠𝑢𝑢

3. Finally the shifts are calculated in the following way:
𝑎𝑎~𝑡𝑡𝑎𝑎𝑛𝑛𝑡 𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎𝑁𝑁 𝑨𝑨𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑢𝑢 ∗ 𝑷𝑷,𝜎𝜎 ∗ 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑁𝑁𝑛𝑛_𝑠𝑠𝑎𝑎𝑎𝑎𝑁𝑁𝑒𝑒, during training
𝑎𝑎~𝑡𝑡𝑎𝑎𝑛𝑛𝑡 𝑨𝑨𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑢𝑢 ∗ 𝑷𝑷 ∗ 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑁𝑁𝑛𝑛_𝑠𝑠𝑎𝑎𝑎𝑎𝑁𝑁𝑒𝑒, during inference.
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RL-agent architecture

MolGNN
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Drug discovery
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DL in drug discovery

• The traditional process of new drug discovery is notoriously long and expensive.
• Key goal is to construct new chemical structures possessing desired properties.
• Traditional virtual screening approach limited to the databases of already known drug 

candidates and is not capable of designing novel drugs
• Most of existing DL approaches do not take into consideration the target protein
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Design a framework for generation of 
novel molecules with desired objectives.

One possible objective is Docking score, 
which is an approximate prediction of 
the binding affinity.

DL problem
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Theory and Algorithms
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Theory and Algorithms
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